
The Definition of Non-Standard ML
(Syntax and Static Semantics)

Claudio Russo
Laboratory for Foundations of Computer Science

Department of Computer Science
University of Edinburgh

based on
The Definition of Standard ML

Revised 1996
by

Robin Milner, Mads Tofte, Robert Harper and Dave MacQueen

Draft of December 15, 2014

1

Contents

1 Introduction and Disclaimer 1

2 Syntax of the Core 2

2.1 Reserved Words . 2

2.2 Special constants . 2

2.3 Comments . 3

2.4 Identifiers . 4

2.5 Lexical analysis . 5

2.6 Infixed operators . 5

2.7 Derived Forms . 7

2.8 Grammar . 7

2.9 Syntactic Restrictions . 11

3 Syntax of Modules 13

3.1 Reserved Words . 13

3.2 Identifiers . 13

3.3 Infixed operators . 13

3.4 Grammar for Modules . 14

3.5 Syntactic Restrictions . 14

4 Scope of Explicit Type Identifiers 18

5 Static Semantics for the Core 20

5.1 Simple Objects . 20

5.2 Compound Objects . 21

5.3 Projection, Injection and Modification 21

5.4 Types, Type Applications and Type functions 22

5.5 Type Schemes . 24

5.6 Non-expansive Expressions . 24

5.7 Closure . 25

5.8 Existential and Parameterised Objects 26

5.9 Type Structures and Type Environments 26

5.10 Inference Rules . 27

5.11 Further Restrictions . 37

iii

6 Static Semantics for Modules 39
6.1 Semantic Objects . 39
6.2 Type Realisation . 40
6.3 Signature Instantiation . 40
6.4 Functor Instantiation . 40
6.5 Enrichment . 40
6.6 Signature Matching . 42
6.7 Equivalence of Package Types 42
6.8 Applicative Module Expressions 42
6.9 Resolution of Long Module Identifiers 44
6.10 Inference Rules . 45

A Appendix: Derived Forms 57

iv

1

1 Introduction and Disclaimer

This document, an extension of the definition of Standard ML, was never in-
tended for publication. I drafted it during the design and implementation of
Moscow ML and its extended Module system. As far as I can recall, the latex
sources were derived from a copy of the SML’90 Definition available at the
LFCS, manually updated to reflect the SML’97 revision and then extended
appropriately. The design only documents the changes to the syntax and
static semantics of Standard ML and does not specify the required changes
to the dynamic semantics. Features added are higher-order functors (both
applicative and generative), first-class modules and recursive modules as well
as minor relaxations of the restrictions in Standard ML to make first-class
modules more useful. The design aimed for backward compatibility with
SML’97. I am content with most of the design but, as it stands, the formal-
ization of recursive modules is more complicated than it needs to be: the
additional semantic objects called recursive structures are unnecessary and
the system presented in my ICFP’ 2001 paper is simpler.

Claudio Russo, Microsoft Research, December 2014.

2 2 SYNTAX OF THE CORE

2 Syntax of the Core

2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except
=) be used as identifiers.

abstype and andalso as case do datatype else end

exception fn fun functor handle if in infix

infixr let local nonfix of op open orelse raise rec

signature structure then type val with withtype where while

() [] { } , : ; _ | = => -> #

2.2 Special constants

An integer constant (in decimal notation) is an optional negation symbol
(~) followed by a non-empty sequence of decimal digits (0-9). An integer
constant (in hexadecimal notation) is an optional negation symbol followed
by 0x followed by a non-empty sequence of hexadecimal digits (0-9a-fA-F,
where A-F are alternatives for a-f, respectively).

A word constant (in decimal notation) is 0w followed by a non-empty
sequence of decimal digits. A word constant (in hexadecimal notation) is
0wx followed by a non-empty sequence of hexadecimal digits.

A real constant is an integer constant in decimal notation, possibly fol-
lowed by a point (.) and one or more digits, possibly followed by an exponent
symbol E and an integer constant in decimal notation; at least one of the
optional parts must occur, hence no integer constant is a real constant. Ex-
amples: 0.7 3.32E5 3E~7 . Non-examples: 23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of N characters (N ≥ 256), numbered
0 to N − 1, which agrees with the ASCII character set on the characters
numbered 0 to 127. The interval [0, N − 1] is called the ordinal range of the
alphabet. A string constant is a sequence, between quotes ("), of zero or more
printable characters (i.e., numbered 33–126), spaces or escape sequences.
Each escape sequence starts with the escape character \ , and stands for a
character sequence. The escape sequences are:

\a A single character interpreted by the system as alert (ASCII
7)

\b Backspace (ASCII 8)

2.3 Comments 3

\t Horizontal Tab (ASCII 9)
\n Linefeed, also known as newline (ASCII 10)
\v Vertical Tab (ASCII 11)
\f Form Feed (ASCII 12)
\r Carriage return (ASCII 13)
\^c The control character c, where c may be any character with

number 64–95. The number of \^c is 64 less than the number
of c.

\ddd The single character with number ddd (3 decimal digits de-
noting an integer in the ordinal range of the alphabet).

\uxxxx The single character with number xxxx (4 hexadecimal digits
denoting an integer in the ordinal range of the alphabet).

\" "

\\ \

\f · ·f\ This sequence is ignored, where f · ·f stands for a sequence of
one or more formatting characters.

The formatting characters are a subset of the non-printable characters
including at least space, tab, newline, formfeed. The last form allows long
strings to be written on more than one line, by writing \ at the end of one
line and at the start of the next.

A character constant is a sequence of the form #s, where s is a string
constant denoting a string of size one character.

Libraries may provide multiple numeric types and multiple string types.
To each string type corresponds an alphabet with ordinal range [0, N−1] for
some N ≥ 256; each alphabet must agree with the ASCII character set on the
characters numbered 0 to 127. When multiple alphabets are supported, all
characters of a given string constant are interpreted over the same alphabet.
For each special constant, overloading resolution is used for determining the
type of the constant (see ??).

We denote by SCon the class of special constants, i.e., the integer, real,
and string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (* *) in
which comment brackets are properly nested. No space is allowed between
the two characters which make up a comment bracket (* or *) . An

4 2 SYNTAX OF THE CORE

VId (value identifiers) long
TyId (type identifiers)
TyCon (type constructors) long
Lab (record labels)
StrId (structure identifiers) long

Figure 1: Identifiers

unmatched (* should be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1.
We use vid , tyid to range over VId, TyId etc. For each class X marked

“long” there is a class longX of long identifiers; if x ranges over X then
longx ranges over longX. The syntax of these long identifiers is given by the
following:

longx ::= x identifier
longstrid .x qualified identifier (n ≥ 1)

The qualified identifiers constitute a link between the Core and the Mod-
ules. Throughout this document, the term “identifier”, occurring without an
adjective, refers to non-qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes
(’) and underbars () starting with a letter or prime, or symbolic: any non-
empty sequence of the following symbols

! % & $ # + - / : < = > ? @ \ ~ ‘ ^ | *

In either case, however, reserved words are excluded. This means that for
example # and | are not identifiers, but ## and |=| are identifiers.
The only exception to this rule is that the symbol = , which is a reserved
word, is also allowed as an identifier to stand for the equality predicate. The
identifier = may not be re-bound; this precludes any syntactic ambiguity.

A type identifier tyid may be any alphanumeric identifier starting with a
prime; the subclass ETyId of TyId, the equality type identifiers, consists of
those which start with two or more primes.

The other four classes (VId, TyCon, Lab and StrId) are represented by
identifiers not starting with a prime. However, * is excluded from TyCon,
to avoid confusion with the derived form of tuple type (see Figure ??). The

2.5 Lexical analysis 5

class Lab is extended to include the numeric labels 1 2 3 ···, i.e. any
numeral not starting with 0.

TyId is therefore disjoint from the other four classes. Otherwise, the syn-
tax class of an occurrence of identifier id in a Core phrase (ignoring derived
forms, Section 2.7) is determined thus:

1. Immediately before “.” – i.e. in a long identifier – or in an open

declaration, id is a structure identifier. The following rules assume
that all occurrences of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, id is a record label.

3. Elsewhere in types id is a type constructor.

4. Elsewhere, id is a value identifier.

By means of the above rules a compiler can determine the class to which
each identifier occurrence belongs; for the remainder of this document we
shall therefore assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or a long identifier. Comments and formatting characters
separate items (except within string constants; see Section 2.2) and are oth-
erwise ignored. At each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr directive,
which may occur as a declaration or specification; this status only pertains
to its use as a vid within the scope (see below) of the directive. (Note
that qualified identifiers never have infix status.) If vid has infix status,
then “exp1 vid exp2” (resp. “pat1 vid pat2”) may occur – in parentheses if
necessary – wherever the application “vid{1=exp1,2=exp2}” or its derived
form “vid(exp1,exp2)” (resp “vid(pat1,pat2)”) would otherwise occur. On
the other hand, an occurrence of any long identifier (qualified or not) prefixed
by op is treated as non-infixed. The only required use of op in the Core
is in prefixing a non-infixed occurrence of an identifier vid which has infix

6 2 SYNTAX OF THE CORE

status; elsewhere in the Core op, where permitted, has no effect.1. Infix
status is cancelled by the nonfix directive. We refer to the three directives
collectively as fixity directives.

The form of the fixity directives is as follows (n ≥ 1):

infix 〈d〉 vid1 ··· vidn

infixr 〈d〉 vid1 ··· vidn

nonfix vid1 ··· vidn

where 〈d〉 is an optional decimal digit d indicating binding precedence. A
higher value of d indicates tighter binding; the default is 0. infix and
infixr dictate left and right associativity respectively. In an expression of
the form exp1 vid1 exp2 vid2 exp3, where vid1 and vid2 are infixed operators
with the same precedence, either both must associate to the left or both
must associate to the right. For example, suppose that << and >> have equal
precedence, but associate to the left and right respectively; then

x << y << z parses as (x << y) << z

x >> y >> z parses as x >> (y >> z)

x << y >> z is illegal
x >> y << z is illegal

The precedence of infix operators relative to other expression and pattern
constructions is given in Appendix ??.

The scope of a fixity directive dir is the ensuing program text, except
that if dir occurs in a declaration dec in either of the phrases

let dec in ··· end

local dec in ··· end

then the scope of dir does not extend beyond the phrase. Further scope
limitations are imposed for Modules.

These directives and op are omitted from the Core semantic rules, since
they affect only parsing.

1In Modules, op is used to resolve the occurrence of long module identifier to either
a long structure identifier or a long functor identifier, whenever the interpretation of the
original identifier is not determined by the context

2.7 Derived Forms 7

AtExp atomic expressions
ExpRow expression rows
Exp expressions
Match matches
Mrule match rules

Dec declarations
ValBind value bindings
TypBind type bindings
DatBind datatype bindings
ConBind constructor bindings
ExBind exception bindings

AtPat atomic patterns
PatRow pattern rows
Pat patterns

TyConPath type constructor paths
Ty type expressions
TyRow type-expression rows

Figure 2: Core Phrase Classes

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be ex-
pressed in terms of a smaller number of syntactic forms, called the bare lan-
guage. These derived forms, and their equivalent forms in the bare language,
are given in Appendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable
atexp to range over AtExp, etc.

The grammatical rules for the Core are shown in Figures 3, 4 and 5.

The following conventions are adopted in presenting the grammatical
rules, and in their interpretation:

• The brackets 〈 〉 enclose optional phrases.

8 2 SYNTAX OF THE CORE

• For any syntax class X (over which x ranges) we define the syntax class
Xseq (over which xseq ranges) as follows:

xseq ::= x (singleton sequence)
(empty sequence)

(x1,···,xn) (sequence, n ≥ 1)

(Note that the “···” used here, meaning syntactic iteration, must not
be confused with “...” which is a reserved word of the language.)

• Alternative forms for each phrase class are in order of decreasing prece-
dence; this resolves ambiguity in parsing, as explained in Appendix ??.

• L (resp. R) means left (resp. right) association.

• The syntax of types binds more tightly than that of expressions.

• Each iterated construct (e.g. match, ···) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.

2.8 Grammar 9

atexp ::= scon special constant
〈op〉longvid value identifier
{ 〈exprow〉 } record
let dec in exp end local declaration
[structure modexp as sigexp] structure package
[functor modexp as sigexp] functor package
(exp)

exprow ::= lab = exp 〈 , exprow〉 expression row

exp ::= atexp atomic
exp atexp application (L)
exp1 vid exp2 infixed application
exp : ty typed (L)
exp handle match handle exception
raise exp raise exception
fn match function

match ::= mrule 〈 | match〉

mrule ::= pat => exp

Figure 3: Grammar: Expressions and Matches

10 2 SYNTAX OF THE CORE

dec ::= val tyidseq valbind value declaration
type typbind type declaration
datatype datbind datatype declaration
datatype tycon = datatype tyconpath datatype replication
abstype datbind with dec end abstype declaration
exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration

(n ≥ 1)
structure strbind structure declaration
functor funbind functor declaration
signature sigbind signature declaration

empty declaration
dec1 〈;〉 dec2 sequential declaration
infix 〈d〉 vid1 ··· vidn infix (L) directive
infixr 〈d〉 vid1 ··· vidn infix (R) directive
nonfix vid1 ··· vidn nonfix directive

valbind ::= pat = exp 〈and valbind〉
rec valbind

typbind ::= tyidseq tycon = ty 〈and typbind〉

datbind ::= tyidseq tycon = conbind 〈and datbind〉

conbind ::= 〈op〉vid 〈of ty〉 〈 | conbind〉

exbind ::= 〈op〉vid 〈of ty〉 〈and exbind〉
〈op〉vid = 〈op〉longvid 〈and exbind〉

Figure 4: Grammar: Declarations and Bindings

2.9 Syntactic Restrictions 11

atpat ::= wildcard
scon special constant
〈op〉longvid variable
{ 〈patrow〉 } record
(pat)

patrow ::= ... wildcard
lab = pat 〈 , patrow〉 pattern row

pat ::= atpat atomic
〈op〉longvid atpat value construction
pat1 vid pat2 infixed value construction
pat : ty typed
〈op〉vid〈: ty〉 as pat layered

tyconpath ::= longtycon long type constructor
longtycon where strid = modexp type projection

ty ::= tyid type identifier
{ 〈tyrow〉 } record type expression
tyseq tyconpath type construction
ty -> ty′ function type expression (R)
[sigexp] package type expression
(ty)

tyrow ::= lab : ty 〈 , tyrow〉 type-expression row

Figure 5: Grammar: Patterns and Type expressions

2.9 Syntactic Restrictions

• No expression row, pattern row or type row may bind the same lab
twice.

• No binding valbind , typbind , datbind or exbind may bind the same
identifier twice; this applies also to value constructors within a datbind .

• No tyidseq may contain the tyid twice.

• For each value binding pat = exp within rec, exp must be of the form
fn match. or more type expressions. The derived form of function-
value binding given in Appendix A, page 60, necessarily obeys this

12 2 SYNTAX OF THE CORE

restriction.

• No datbind , valbind or exbind may bind true, false, nil, :: or ref.
No datbind or exbind may bind it.

• No real constant may occur in a pattern.

• In a value declaration val tyidseq valbind , if valbind contains another
value declaration val tyidseq ′ valbind ′ then tyidseq and tyidseq ′ must be
disjoint. In other words, no type variable may be scoped by two value
declarations of which one occurs inside the other. This restriction ap-
plies after tyidseq and tyidseq ′ have been extended to include implicitly
scoped type variables, as explained in Section 4.

13

3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived
forms. There are no further special constants; comments and lexical analysis
are as for the Core. The derived forms for modules appear in Appendix A.

3.1 Reserved Words

The following are the additional reserved words used in Modules.

eqtype include sharing sig struct :>

3.2 Identifiers

The additional syntax classes for Modules are SigId (signature identifiers),
FunId (functor identifiers), and ModId (unresolved identifiers that may be
resolved to either structure or functor identifiers) ; they may be either al-
phanumeric – not starting with a prime – or symbolic. Functor and module
identifiers may be long, in the sense of Section 2.4. (Long) module identifiers
range of the union of (long) structure identifiers and (long) functor identi-
fiers: the interpretation of a (long) module identifier cannot be determined
grammatically, but is resolved during elaboration. Otherwise, the class of
each identifier occurrence is determined by the grammatical rules which fol-
low. Henceforth, therefore, we consider all identifier classes (excluding ModId
and longModId) to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syntax,
there is a further scope limitation: if dir occurs in a declaration dec in any
of the phrases

let dec in ··· end

struct dec end

sig spec end

then the scope of dir does not extend beyond the phrase.

14 3 SYNTAX OF MODULES

AtModExp atomic module expressions
ModExp module expressions

StrBind structure bindings
FunBind functor bindings
SigBind signature bindings

SigExp signature expressions

Spec specifications
ValDesc value descriptions
TypDesc type descriptions
DatDesc datatype descriptions
ConDesc constructor descriptions
ExDesc exception descriptions
StrDesc structure descriptions
FunDesc functor descriptions

Figure 6: Modules Phrase Classes

One effect of this limitation is that fixity is local to a basic structure
expression – in particular, to such an expression occurring as a functor body.
Similarly, fixity is local to a basic signature expression.

Fixity directives (but not op) are omitted from the Modules semantic
rules, since they affect only parsing.

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 6. We use the variable
atmodexp to range over AtModExp, etc. The conventions adopted in pre-
senting the grammatical rules for Modules are the same as for the Core. The
grammatical rules are shown in Figures 7 and 8.

3.5 Syntactic Restrictions

• No binding strbind , funbind , or sigbind may bind the same identifier
twice.

3.5 Syntactic Restrictions 15

atmodexp ::= struct dec end basic
〈op〉longmodid module identifier
let dec in modexp end local declaration
(modexp)

modexp ::= atmodexp atomic
modexp atmodexp functor application
modexp : sigexp transparent constraint
modexp :> sigexp opaque constraint
functor (modid:sigexp) => modexp generative functor
functor modid:sigexp => modexp applicative functor
rec (strid:sigexp)modexp recursive structure

strbind ::= strid = modexp 〈and strbind〉 structure binding
strid as sigexp = exp 〈and strbind〉 package binding

funbind ::= funid = modexp 〈and funbind〉 functor binding
funid as sigexp = exp 〈and funbind〉 package binding

sigbind ::= sigid = sigexp 〈and sigbind〉

sigexp ::= sig spec end basic
sigid signature identifier
sigexp where type type realisation

tyidseq longtycon = ty
functor (modid : sigexp1) -> sigexp2 opaque functor signature
functor modid : sigexp1 -> sigexp2 transparent functor signature
rec (strid:sigexp)sigexp recursive structure signature

Figure 7: Grammar: Structure and Signature Expressions

16 3 SYNTAX OF MODULES

• No description valdesc, typdesc, datdesc, exdesc or strdesc or fundesc
may describe the same identifier twice; this applies also to value con-
structors within a datdesc.

• No tyvarseq may contain the same tyvar twice.

• No datdesc, valdesc or exdesc may describe true, false, nil, :: or
ref. No datdesc or exdesc may describe it.

3.5 Syntactic Restrictions 17

spec ::= val tyidseq valdesc value
type typdesc type
eqtype typdesc eqtype
datatype datdesc datatype
datatype tycon = datatype tyconpath replication
exception exdesc exception
structure strdesc structure
functor fundesc functor
signature sigbind signature
include sigexp include

empty
spec1 〈;〉 spec2 sequential
spec sharing type sharing

longtycon1 = ··· = longtyconn (n ≥ 2)
infix 〈d〉 vid1 ··· vidn infix (L) directive
infixr 〈d〉 vid1 ··· vidn infix (R) directive
nonfix vid1 ··· vidn nonfix directive

valdesc ::= vid : ty 〈and valdesc〉

typdesc ::= tyidseq tycon 〈and typdesc〉

datdesc ::= tyidseq tycon = condesc 〈and datdesc〉

condesc ::= vid 〈of ty〉 〈 | condesc〉

exdesc ::= vid 〈of ty〉 〈and exdesc〉

strdesc ::= strid : sigexp 〈and strdesc〉
fundesc ::= funid : sigexp 〈and fundesc〉

Figure 8: Grammar: Specifications

18 4 SCOPE OF EXPLICIT TYPE IDENTIFIERS

4 Scope of Explicit Type Identifiers

In the Core language, a type or datatype binding can explicitly introduce
type identifiers whose scope is that binding. Similary, in Modules, a type or
datatype description can explicitly introduce type identifiers whose scope is
that description. Moreover, in a Core value declaration val tyidseq valbind,
the sequence tyidseq binds type identifiers: a type identifier occurs free in
val tyidseq valbind iff it occurs free in valbind and is not in the sequence
tyidseq. Similarly, in a Modules value specification val tyidseq valdesc,
the sequence tyidseq binds type identifiers: a type identifier occurs free in
val tyidseq valdesc iff it occurs free in valdesc and is not in the sequence
tyidseq. However, explicit binding of type identifiers at val is optional, so
we still have to account for the scope of any type indentifiers that occur free
in type expressions.

Every occurrence of a value declaration or specification is said to scope a
set of explicit type identifiers determined as follows.

First, a free occurrence of α in a value declaration val tyidseq valbind or
value specification val tyidseq valdesc is said to be unguarded if the occur-
rence is not part of a smaller value declaration or specification within the
phrase. In this case we say that α occurs unguarded in the phrase.

Then we say that α is implicitly scoped at a particular value declaration
val tyidseq valbind or value specification val tyidseq valdesc in a program if
(1) α occurs unguarded in this phrase, and (2) α does not occur unguarded
in any larger value declaration or specification containing the given phrase.

Henceforth, we assume that for every value declaration or specification
val tyidseq ··· occurring in the program, every explicit type identifier implic-
itly scoped at the val has been added to tyidseq. Thus for example, in the
two declarations

val x = let val id:’a->’a = fn z=>z in id id end

val x = (let val id:’a->’a = fn z=>z in id id end; fn z=>z:’a)

the type identifier ’a is scoped differently; they become respectively

val x = let val ’a id:’a->’a = fn z=>z in id id end

val ’a x = (let val id:’a->’a = fn z=>z in id id end; fn z=>z:’a)

Then, according to the inference rules in Section 5.10 the first example
can be elaborated, but the second cannot since ’a is bound at the outer value

19

declaration leaving no possibility of two different instantiations of the type
of id in the application id id.

20 5 STATIC SEMANTICS FOR THE CORE

5 Static Semantics for the Core

Our first task in presenting the semantics – whether for Core or Modules,
static or dynamic – is to define the objects concerned. In addition to the
class of syntactic objects, which we have already defined, there are classes
of so-called semantic objects used to describe the meaning of the syntac-
tic objects. Some classes contain simple semantic objects; such objects are
usually identifiers or names of some kind. Other classes contain compound
semantic objects, such as types or environments, which are constructed from
component objects.

5.1 Simple Objects

All semantic objects in the static semantics of the entire language are built
from identifiers and two further kinds of simple objects: type variables, type
constructor names and identifier status descriptors. Type variables are the
semantic counterparts of type identifiers and range over types. Type con-
structor names range over the values taken by type constructors; we shall
usually refer to them briefly as type names, but they are to be clearly distin-
guished from type variables and type constructors. The simple object classes,
and the variables ranging over them, are shown in Figure 9.

α or tyvar ∈ TyVar type variables
t or u ∈ TyName type names

is ∈ IdStatus= {c, e, v} identifier status descriptors

Figure 9: Simple Semantic Objects

Each α ∈ TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality. Each t ∈ TyName has a kind K ∈ Kind
(defined in Figure 10). We denote the class of type names with kind K by
TyNameK , letting tK range over elements of TyNameK . A type name t has
arity k, if, and only if, it has kind k or k=. A type name t admits equality,
or is an equality type name, if, and only if, it has kind k=.

With each special constant scon we associate a type name type(scon)
which is either int, real, word, char or string as indicated by Section 2.2.
(However, see Appendix ?? concerning types of overloaded special constants.)

5.2 Compound Objects 21

5.2 Compound Objects

When A and B are sets FinA denotes the set of finite subsets of A, and

A
fin→ B denotes the set of finite maps (partial functions with finite domain)

from A to B. The domain and range of a finite map, f , are denoted Dom f
and Ran f . A finite map will often be written explicitly in the form {a1 7→
b1, ···, ak 7→ bk}, k ≥ 0; in particular the empty map is {}. We shall use the
form {x 7→ e ; φ} – a form of set comprehension – to stand for the finite
map f whose domain is the set of values x which satisfy the condition φ, and
whose value on this domain is given by f(x) = e.

When f and g are finite maps the map f + g, called f modified by g, is
the finite map with domain Dom f ∪Dom g and values

(f + g)(a) = if a ∈ Dom g then g(a) else f(a).

The compound objects for the static semantics of the Core Language
are shown in Figures 10 and 11. We take ∪ to mean disjoint union over
semantic object classes. We also understand all the defined object classes to
be disjoint.

Note that Λ and ∀ bind type variables. For any semantic object A,
tynamesA and tyvarsA denote respectively the set of type names and the
set of type variables occurring free in A.

Also note that a value environment maps value identifiers to a pair of a
type scheme and an identifier status. If VE(vid) = (σ, is), we say that vid
has status is in VE. An occurrence of a value identifier which is elaborated
in VE is referred to as a value variable, a value constructor or an exception
constructor, depending on whether its status in VE is v, c or e, respectively.

5.3 Projection, Injection and Modification

Projection: We often need to select components of tuples – for example,
the variable-environment component of a context. In such cases we rely
on variable names to indicate which component is selected. For instance
“VE of E” means “the variable-environment component of E”.

When a tuple contains a finite map we shall “apply” the tuple to an
argument, relying on the syntactic class of the argument to determine the
relevant function. For instance C(tycon) means (TE of C)tycon.

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({}, {}, {}, {}, VE).

22 5 STATIC SEMANTICS FOR THE CORE

k ∈ Arity = {k; k ≥ 0}
K or k or k= or K → K ′ ∈ Kind = Arity ∪ Arity ∪ (Kind×Kind)

τ ∈ Type = TyVar ∪ RecType ∪ FunType ∪
ConsType ∪ PackType

(τ1, ···, τk) or τ (k) ∈ Type(k)

(α1, ···, αk) or α(k) ∈ TyVar(k)

% ∈ RecType = Lab
fin→ Type

τ → τ ′ ∈ FunType = Type× Type
ConsType = ∪k∈ArityConsTypek

τ (k) ϑk ∈ ConsTypek = Type(k) × TypeAppk

[X] ∈ PackType = ExMod
θk or Λα(k).τ or ϑk ∈ TypeFcnk =

(TyVar(k) × Type) ∪ TypeAppk

θk
= ∈ TypeFcnk

=

=
{θk ∈ TypeFcnk ; θkadmits equality}

θK→K
′

or ΛtK .θK
′

or ϑK→K
′ ∈ TypeFcnK→K

′
=

(TyNameK × TypeFcnK
′
) ∪

TypeAppK→K
′

ϑK or tK or ϑK
′→K θK

′ ∈ TypeAppK =
TyNameK ∪
(∪K′∈Kind(TypeAppK

′→K × TypeFcnK
′
))

σ or ∀α(k).τ ∈ TypeScheme = ∪k≥0TyVar(k) × Type

Figure 10: Compound Semantic Objects

Modification: The modification of one map f by another map g, written
f + g, has already been mentioned. It is commonly used for environment
modification, for example E + E ′. Often, empty components will be left
implicit in a modification; for example E+VE means E+({}, {}, {}, {}, VE).

5.4 Types, Type Applications and Type functions

A type τ is an equality type, or admits equality, if it is of one of the forms

• α, where α admits equality;

5.4 Types, Type Applications and Type functions 23

(θk, VE) ∈ TyStr = (∪k∈ArityTypeFcnk)× ValEnv

TE ∈ TyEnv = TyCon
fin→ TyStr

VE ∈ ValEnv = VId
fin→ TypeScheme× IdStatus

E or (GE,FE, SE, TE, VE) ∈ Env = SigEnv × FunEnv×
StrEnv × TyEnv × ValEnv

T ∈ TyNameSet = Fin(TyName)

IE ∈ IdEnv = TyId
fin→ Type

C or (IE,E) ∈ Context = IdEnv × Env

Figure 11: Compound Semantic Objects (continued)

• {lab1 7→ τ1, ···, labn 7→ τn}, where each τi admits equality;

• τ (k) ϑ, where ϑ ∈ TypeAppk
=

and all members of τ (k) admit equality;

• (τ ′)ref.

(Note that if τ is a package type [X] then it does not admit equality.)
A type function θ is an equality type function, or admits equality, if it is

of one of the forms

• Λα(k).τ , where, when the type variables α(k) are chosen to admit equal-
ity, then τ also admits equality;

• ϑ, where ϑ ∈ TypeAppk
=

.

The bound variables of a type function θ = Λα(k).τ must be distinct. The
type function has the arity k as its kind. It may also have kind k=, provided
it admits equality. A type function θ = ΛtK .θ ′ has kind K → K ′, provided
θ ′ has kind K ′.

Two type functions are considered equal if they have the same kind and
differ only in their choice of bound variables or type names. In particular,
the equality attribute has no significance in a bound type variable of a type
function; for example, Λα.α → α and Λβ.β → β are equal type functions
even if α admits equality but β does not.

If the type application ϑ has kind k then we identify the type function θ =
ϑ with the type function Λα(k).α(k) ϑ (provided (tyvarsα(k)) ∩ (tyvarsϑ) =

24 5 STATIC SEMANTICS FOR THE CORE

∅) (eta-conversion). If the type application ϑ has kind K → K ′ then we
identify the type function θ = ϑ with the type function ΛtK .ϑ t (provided
t 6∈ tynamesϑ) (eta-conversion).

For convenience, when t has arity k, we shall write the type name t to
mean the type function Λα(k).α(k) t.

We write the application of a type function θk to a vector τ (k) of types as
τ (k)θ. If θ = Λα(k).τ we set τ (k)θ = τ{τ (k)/α(k)} (beta-conversion).

We write τ{θ(k)/t(k)} for the result of substituting type functions θ(k) for
type names t(k) in τ . We assume that all beta-conversions are carried out
after substitution, so that for example

(τ (k)t){Λα(k).τ/t} = τ{τ (k)/α(k)}.

(assuming t 6∈ tynames τ (k)); and

(t θ){Λu.θ ′/t} = θ ′{θ/u}.

(assuming t 6∈ tynames θ).

5.5 Type Schemes

A type scheme σ = ∀α(k).τ generalises a type τ ′, written σ � τ ′, if τ ′ =
τ{τ (k)/α(k)} for some τ (k), where each member τi of τ (k) admits equality if
αi does. If σ′ = ∀β(l).τ ′ then σ generalises σ′, written σ � σ′, if σ � τ ′ and
β(l) contains no free type variable of σ. It can be shown that σ � σ′ iff, for
all τ ′′, whenever σ′ � τ ′′ then also σ � τ ′′.

Two type schemes σ and σ′ are considered equal if they can be obtained
from each other by renaming and reordering of bound type variables, and
deleting type variables from the prefix which do not occur in the body. Here,
in contrast to the case for type functions, the equality attribute must be
preserved in renaming; for example ∀α.α→ α and ∀β.β → β are only equal
if either both α and β admit equality, or neither does. It can be shown that
σ = σ′ iff σ � σ′ and σ′ � σ.

We consider a type τ to be a type scheme, identifying it with ∀().τ .

5.6 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the set Exp of ex-
pressions is partitioned into two classes, the expansive and the non-expansive

5.7 Closure 25

expressions. An expression is non-expansive in context C if, after replacing
infixed forms by their equivalent prefixed forms, and derived forms by their
equivalent forms, it can be generated by the following grammar from the
non-terminal nexp:

nexp ::= scon
〈op〉longvid
{〈nexprow〉}
(nexp)
conexp nexp
nexp:ty
fn match
[structure nmodexp as sigexp]
[functor nmodexp as sigexp]

nexprow ::= lab = nexp 〈 ,nexprow〉
conexp ::= (conexp〈:ty〉)

〈op〉longvid
nmodexp ::= 〈op〉longmodid

(nmodexp)

nmodexp : sigexp
nmodexp :> sigexp
functor (modid:sigexp) => modexp
functor modid:sigexp => modexp
rec (strid:sigexp)nmodexp

Restriction: Within a conexp, we require longvid 6= ref and is of C(longvid) ∈
{c, e}.

All other expressions are said to be expansive (in C). The idea is that
the dynamic evaluation of a non-expansive expression will neither generate
an exception nor extend the domain of the memory, while the evaluation of
an expansive expression might.

5.7 Closure

Let τ be a type and A a semantic object. Then ClosA(τ), the closure of τ with
respect to A, is the type scheme ∀α(k).τ , where α(k) = tyvars(τ) \ tyvarsA.
Commonly, A will be a context C. We abbreviate the total closure Clos{}(τ)
to Clos(τ). If the range of a value environment VE contains only types

26 5 STATIC SEMANTICS FOR THE CORE

(rather than arbitrary type schemes) we set

ClosAVE = {vid 7→ (ClosA(τ), is) ; VE(vid) = (τ, is)}

Closing a variable environment VE that stems from the elaboration of a
value binding valbind requires extra care to ensure type security of references
and exceptions and correct scoping of explicit type variables. Recall that
valbind is not allowed to bind the same variable twice. Thus, for each vid ∈
DomVE there is a unique pat = exp in valbind which binds vid . If VE(vid) =
(τ, is), let ClosC,valbindVE(vid) = (∀α(k).τ, is), where

α(k) =
{

tyvars τ \ tyvarsC, if exp is non-expansive in C;
() if exp is expansive in C.

5.8 Existential and Parameterised Objects

When A is a set of semantic objects, the set Ex(A) of existentially quantified
objects in A and the set Par(A) of parameterised objects in A are defined as
follows:

∃T.a ∈ Ex(A) = TyNameSet× A
ΛT.a ∈ Par(A) = TyNameSet× A

(where a ranges over elements of A).
The prefixes ∃T. and ΛT. are binding constructs. Two objects in Ex(A)

(Par(A)) are considered equal if they are equivalent up to a kind preserving
renaming of their bound types names.

5.9 Type Structures and Type Environments

A type structure (θk, VE) is well-formed if either VE = {}, or θk is a type
application ϑk. (The latter case arises, with VE 6= {}, in datatype dec-
larations.) All type structures occurring in elaborations are assumed to be
well-formed.

A type structure (ϑ, VE) is said to respect equality if, whenever ϑ ∈
TypeAppk

=

(i.e. ϑ admits equality), then either ϑ = ref (see Appendix ??)
or, for each VE(vid) of the form ∀α(k).(τ → α(k)ϑ), the type function Λα(k).τ
also admits equality. (This ensures that the equality predicate = will be
applicable to a constructed value (vid , v) of type τ (k)ϑ only when it is appli-
cable to the value v itself, whose type is τ{τ (k)/α(k)}.) A type environment
TE respects equality if all its type structures do so.

5.10 Inference Rules 27

Let TE be a type environment, and let T be the set of type names t such
that (t, VE) occurs in TE for some VE 6= {}. Then TE is said to maximise
equality if (a) TE respects equality, and also (b) if any larger subset of T
were to admit equality (without any change in the equality attribute of any
type names not in T) then TE would cease to respect equality.

For any TE of the form

TE = {tycon i 7→ (ti, VEi) ; 1 ≤ i ≤ k},

where no VEi is the empty map, and for any E we define Abs(TE,E) to
be the environment obtained from E and TE as follows. First, let Abs(TE)
be the type environment {tycon i 7→ (ti, {}) ; 1 ≤ i ≤ k} in which all value
environments VEi have been replaced by the empty map. Let T ′ = {t′1, ···, t′k}
be a set of new distinct type names, none of which admit equality, and where
t′i has the same arity as ti for 1 ≤ i ≤ k. Then Abs(TE,E) = ∃T ′.E ′, where
E ′ is the result of simultaneously substituting t′i for ti, 1 ≤ i ≤ k, throughout
Abs(TE) + E, i.e. E ′ = (Abs(TE) + E){t′(k)/t(k)} (The effect of the latter
substitution is to ensure that the use of equality on an abstype is restricted
to the with part.)

5.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form

A ` phrase ⇒ A′

where A is typically a context, phrase is a phrase of the Core, and A′ is a
semantic object – typically a type or an existentially quantified environment.
It may be pronounced “phrase elaborates to A′ in (context or environment)
A”. Some rules have extra hypotheses not of this form; they are called
side conditions. In the presentation of the rules, phrases within single angle
brackets 〈 〉 are called first options, and those within double angle brackets
〈〈 〉〉 are called second options. To reduce the number of rules, we have
adopted the following convention:

In each instance of a rule, the first options must be either all
present or all absent; similarly the second options must be either
all present or all absent.

28 5 STATIC SEMANTICS FOR THE CORE

Long Value Identifiers C ` longvid ⇒ (σ, is)

vid ∈ DomC

C ` vid ⇒ C(vid)
(1)

C ` longstrid ⇒ RS S = S of RS vid ∈ DomS

C ` longstrid .vid ⇒ S(vid)
(2)

Atomic Expressions C ` atexp ⇒ τ

C ` scon ⇒ type(scon)
(3)

C ` longvid ⇒ (σ, is) σ � τ

C ` longvid ⇒ τ
(4)

〈C ` exprow ⇒ %〉
C ` { 〈exprow〉 }⇒ {}〈+ %〉 in Type

(5)

C ` dec ⇒ ∃T.E T ∩ tynamesC = ∅
C + E ` exp ⇒ τ T ∩ tynames τ = ∅

C ` let dec in exp end⇒ τ
(6)

C `s modexp ⇒ ∃T.RS
C ` sigexp ⇒ ΛT ′.RS ′

T ∩ tynames(ΛT ′.RS ′) = ∅
ΛT ′.RS ′ ≥ RS ′′ ≺ RS

C ` [structure modexp as sigexp]⇒ [∃T ′.RS ′]
(7)

C `f modexp ⇒ ∃T.F
C ` sigexp ⇒ ΛT ′.F ′

T ∩ tynames(ΛT ′.F ′) = ∅
ΛT ′.F ′ ≥ F ′′ ≺ F

C ` [functor modexp as sigexp]⇒ [∃T ′.F ′]
(8)

C ` exp ⇒ τ

C ` (exp)⇒ τ
(9)

Comments:

5.10 Inference Rules 29

(4) The instantiation of type schemes allows different occurrences of a single
longvid to assume different types.

(6) The first side condition (that also occurs elsewhere in the rules) ensures
that type names generated by the first sub-phrase are distinct from type
names already appearing in the context. The second side condition
prevents these type names from escaping outside the local declaration.

Expression Rows C ` exprow ⇒ %

C ` exp ⇒ τ 〈C ` exprow ⇒ %〉
C ` lab = exp 〈 , exprow〉 ⇒ {lab 7→ τ}〈+ %〉

(10)

Expressions C ` exp ⇒ τ

C ` atexp ⇒ τ

C ` atexp ⇒ τ
(11)

C ` exp ⇒ τ ′ → τ C ` atexp ⇒ τ ′

C ` exp atexp⇒ τ
(12)

C ` exp ⇒ τ C ` ty ⇒ τ

C ` exp : ty⇒ τ
(13)

C ` exp ⇒ τ C ` match ⇒ exn→ τ

C ` exp handle match⇒ τ
(14)

C ` exp ⇒ exn

C ` raise exp⇒ τ
(15)

C ` match ⇒ τ

C ` fn match⇒ τ
(16)

Comments:

(11) The relational symbol ` is overloaded for all syntactic classes (here
atomic expressions and expressions).

30 5 STATIC SEMANTICS FOR THE CORE

(13) Here τ is determined by C and ty . Notice that type variables in ty
cannot be instantiated in obtaining τ ; thus the expression 1:’a will not
elaborate successfully, nor will the expression (fn x=>x):’a->’b. The
effect of type variables in an explicitly typed expression is to indicate
exactly the degree of polymorphism present in the expression.

(15) Note that τ does not occur in the premise; thus a raise expression has
“arbitrary” type.

Matches C ` match ⇒ τ

C ` mrule ⇒ τ 〈C ` match ⇒ τ〉
C ` mrule 〈 | match〉 ⇒ τ

(17)

Match Rules C ` mrule ⇒ τ

C ` pat ⇒ (VE, τ) C + VE ` exp ⇒ τ ′

C ` pat => exp ⇒ τ → τ ′
(18)

Comment: This rule allows new free type variables to enter the context.
These new type variables will be chosen, in effect, during the elaboration of
pat (i.e., in the inference of the first hypothesis). In particular, their choice
may have to be made to agree with type variables present in any explicit
type expression occurring within exp (see rule 13).

Declarations C ` dec ⇒ ∃T.E
C ` tyidseq ⇒ (α1, ···, αk), IE C + IE ` valbind ⇒ VE
VE ′ = ClosC,valbindVE {α1, ···, αk} ∩ tyvarsVE ′ = ∅

C ` val tyidseq valbind⇒ ∃∅.VE ′ in Env
(19)

C ` typbind ⇒ TE

C ` type typbind⇒ ∃∅.TE in Env
(20)

C + TE ` datbind ⇒ VE, TE
T = {t; (t, VE ′) ∈ RanTE}
T ∩ tynamesC = ∅
TE maximises equality

C ` datatype datbind⇒ ∃T.(VE, TE) in Env
(21)

5.10 Inference Rules 31

C ` tyconpath ⇒ (θ, VE)
TE = {tycon 7→ (θ, VE)}

C ` datatype tycon = datatype tyconpath ⇒
∃∅.(VE, TE) in Env

(22)

C + TE ` datbind ⇒ VE, TE T = {t; (t, VE) ∈ RanTE}
TE maximises equality T ∩ tynamesC = ∅
C + (VE, TE) ` dec ⇒ ∃T ′.E T ′ ∩ T = ∅
Abs(TE,E) = ∃T ′′.E ′ T ′′ ∩ T ′ = ∅
C ` abstype datbind with dec end⇒ ∃T ′ ∪ T ′′.Abs(TE,E)

(23)

C ` exbind ⇒ VE

C ` exception exbind⇒ ∃∅.VE in Env
(24)

C ` dec1 ⇒ ∃T1.E1 T1 ∩ tynamesC = ∅
C + E1 ` dec2 ⇒ ∃T2.E2 T2 ∩ T1 = ∅
C ` local dec1 in dec2 end⇒ ∃T1 ∪ T2.E2

(25)

C ` longstrid1 ⇒ RS1 S1 = S of RS1
...

C ` longstridn ⇒ RSn Sn = S of RSn

C ` open longstrid1 ··· longstridn ⇒ ∃∅.(S1 + ···+ Sn) in Env
(26)

C ` strbind ⇒ ∃T.SE
C ` structure strbind ⇒ ∃T.SE in Env

(27)

C ` funbind ⇒ ∃T.FE
C ` functor funbind ⇒ ∃T.FE in Env

(28)

C ` sigbind ⇒ GE

C ` signature sigbind ⇒ ∃∅.GE in Env
(29)

C ` ⇒ ∃∅.{} in Env
(30)

C ` dec1 ⇒ ∃T1.E1 T1 ∩ tynamesC = ∅
C + E1 ` dec2 ⇒ ∃T2.E2 T2 ∩ (T1 ∪ tynamesE1) = ∅

C ` dec1 〈;〉 dec2 ⇒ ∃T1 ∪ T2.E1 + E2

(31)

Comments:

32 5 STATIC SEMANTICS FOR THE CORE

(19) Here VE will contain types rather than general type schemes. The
closure of VE allows value identifiers to be used polymorphically, via
rule 4.

The side-condition on {α1, ···, αk} ensures that the type variables bound
to tyidseq are bound by the closure operation, if they occur in the range
of VE.

On the other hand, if the phrase val tyidseq valbind occurs inside some
larger value binding val tyidseq0 valbind0 then no type variable α
bound to a type identifier listed in tyidseq0 will become bound by
the ClosC,valbind(VE) operation; for α must be in IE of C and hence
excluded from closure by the definition of the closure operation (Sec-
tion 5.7, page 26) since tyvars(IE of C) ⊆ tyvarsC.

(21),(23) The side conditions express that the elaboration of each datatype
binding generates new type names and that as many of these new names
as possible admit equality. Adding TE to the context on the left of the
` captures the recursive nature of the binding.

(22) Note that no new type name is generated (i.e., datatype replication is
not generative).

(23) The Abs operation was defined in Section 5.9, page 27.

(24) No closure operation is used here, as this would make the type sys-
tem unsound. Example: exception E of ’a; val it = (raise E

5) handle E f => f(2) .

Value Bindings C ` valbind ⇒ VE

C ` pat ⇒ (VE, τ) C ` exp ⇒ τ 〈C ` valbind ⇒ VE ′〉
C ` pat = exp 〈and valbind〉 ⇒ VE 〈+ VE ′〉

(32)

C + VE ` valbind ⇒ VE

C ` rec valbind⇒ VE
(33)

Comments:

(32) When the option is present we have DomVE ∩ DomVE ′ = ∅ by the
syntactic restrictions.

5.10 Inference Rules 33

(33) Modifying C by VE on the left captures the recursive nature of the
binding. From rule 32 we see that any type scheme occurring in
VE will have to be a type. Thus each use of a recursive function
in its own body must be ascribed the same type. Also note that
C + VE may overwrite identifier status. For example, the program
datatype t = f; val rec f = fn x => x; is legal.

Type Bindings C ` typbind ⇒ TE

C ` tyidseq ⇒ (α(k), IE) C + IE ` ty ⇒ τ 〈C ` typbind ⇒ TE〉
C ` tyidseq tycon = ty 〈and typbind〉 ⇒

{tycon 7→ (Λα(k).τ, {})} 〈+ TE〉

(34)

Comment: The syntactic restrictions ensure that the type function Λα(k).τ
satisfies the well-formedness constraints of Section 5.4 and they ensure tycon /∈
DomTE.

Data Type Bindings C ` datbind ⇒ VE, TE

C ` tyidseq ⇒ (α(k), IE)
C + IE, α(k) t ` conbind ⇒ VE

〈C ` datbind ⇒ VE ′, TE ′ ∀(t′, VE ′′) ∈ RanTE, t 6= t′〉
C ` tyidseq tycon = conbind 〈and datbind〉 ⇒

ClosCVE〈+ VE ′〉, {tycon 7→ (t,ClosCVE)} 〈+ TE ′〉

(35)

Comment: The syntactic restrictions ensure DomVE ∩ DomVE ′ = ∅ and
tycon /∈ DomTE ′.

Constructor Bindings C, τ ` conbind ⇒ VE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` conbind ⇒ VE〉〉
C, τ ` vid 〈of ty〉 〈〈 | conbind〉〉 ⇒
{vid 7→ (τ, c)} 〈+ {vid 7→ (τ ′ → τ, c)} 〉 〈〈+ VE〉〉

(36)

Comment: By the syntactic restrictions vid /∈ DomVE.

34 5 STATIC SEMANTICS FOR THE CORE

Exception Bindings C ` exbind ⇒ VE

〈C ` ty ⇒ τ〉 〈〈C ` exbind ⇒ VE〉〉
C ` vid 〈of ty〉 〈〈and exbind〉〉 ⇒

{vid 7→ (exn, e} 〈+ {vid 7→ (τ → exn, e)} 〉 〈〈+ VE〉〉
(37)

C ` longvid ⇒ (τ, e) 〈C ` exbind ⇒ VE〉
C ` vid = longvid 〈and exbind〉 ⇒ {vid 7→ (τ, e)} 〈+ VE〉

(38)

Comments:

(37) Notice that τ may contain type variables.

(37),(38) For each C and exbind , there is at most one VE satisfying C `
exbind ⇒ VE.

Atomic Patterns C ` atpat ⇒ (VE, τ)

C ` ⇒ ({}, τ)
(39)

C ` scon ⇒ ({}, type(scon))
(40)

vid 6∈ Dom(C) or is of C(vid) = v

C ` vid ⇒ ({vid 7→ (τ, v}, τ)
(41)

C ` longvid ⇒ (σ, is) is 6= v σ � τ (k) ϑ

C ` longvid ⇒ ({}, τ (k) ϑ)
(42)

〈C ` patrow ⇒ (VE, %)〉
C ` { 〈patrow〉 }⇒ ({}〈+ VE〉, {}〈+ %〉 in Type)

(43)

C ` pat ⇒ (VE, τ)

C ` (pat)⇒ (VE, τ)
(44)

Comments:

(41,42) The context C determines which of these two rules applies. In
rule 41, note that vid can assume a type, not a general type scheme.

5.10 Inference Rules 35

Pattern Rows C ` patrow ⇒ (VE, %)

C ` ...⇒ ({}, %)
(45)

C ` pat ⇒ (VE, τ)
〈C ` patrow ⇒ (VE ′, %) lab /∈ Dom %〉

C ` lab = pat 〈 , patrow〉 ⇒ (VE〈+ VE ′〉, {lab 7→ τ}〈+ %〉)
(46)

Patterns C ` pat ⇒ (VE, τ)

C ` atpat ⇒ (VE, τ)

C ` atpat ⇒ (VE, τ)
(47)

C ` longvid ⇒ (σ, is) is 6= v σ � τ ′ → τ C ` atpat ⇒ (VE, τ ′)

C ` longvid atpat⇒ (VE, τ)
(48)

C ` pat ⇒ (VE, τ) C ` ty ⇒ τ

C ` pat : ty⇒ (VE, τ)
(49)

vid 6∈ Dom(C) or is of C(vid) = v

〈C ` ty ⇒ τ〉 C ` pat ⇒ (VE, τ) vid 6∈ DomVE

C ` vid〈: ty〉 as pat⇒ ({vid 7→ (τ, v)}+ VE, τ)
(50)

Long Type Constructors C ` longtycon ⇒ (θk, VE)

tycon ∈ DomC

C ` tycon ⇒ C(tycon)
(51)

C ` longstrid ⇒ RS S = S of RS tycon ∈ DomS

C ` longstrid .tycon ⇒ S(tycon)
(52)

36 5 STATIC SEMANTICS FOR THE CORE

Type Constructor Paths C ` tyconpath ⇒ (θk, VE)

C ` longtycon ⇒ (θ, VE)

C ` longtycon ⇒ (θ, VE)
(53)

C `s modexp ⇒ ∃T.RS
C + {strid 7→ RS} ` longtycon ⇒ (θ, VE)
T ∩ (tynames(C) ∪ tynames((θ, VE))) = ∅

C ` longtycon where strid = modexp ⇒ (θ, VE)
(54)

Type Identifier Sequences C ` tyidseq ⇒ (α(k), IE)

α admits equality iff tyid ∈ ETyId α 6∈ (tyvarsC)

C ` tyid ⇒ ((α), {tyid 7→ (α)})
(55)

C ` ⇒ ((), {})
(56)

αi admits equality iff tyid i ∈ ETyId, i = 1..k
αi 6∈ (tyvarsC) ∪ {α1, . . . , α(i−1)}, i = 1..k

C ` (tyid1,···,tyidk)⇒ ((α1, ···, αk), {tyid1 7→ α1}+ ···+ {tyidk 7→ αk})
(57)

Type Expressions C ` ty ⇒ τ

tyid ∈ Dom C

C ` tyid ⇒ C(tyid)
(58)

〈C ` tyrow ⇒ %〉
C ` { 〈tyrow〉 }⇒ {}〈+ %〉 in Type

(59)

tyseq = ty1···tyk C ` ty i ⇒ τi (1 ≤ i ≤ k)
C ` tyconpath ⇒ (θk, VE)

C ` tyseq tyconpath⇒ τ (k) θk
(60)

C ` ty ⇒ τ C ` ty ′ ⇒ τ ′

C ` ty -> ty′ ⇒ τ → τ ′
(61)

5.11 Further Restrictions 37

C ` sigexp ⇒ ΛT.M

C ` [sigexp]⇒ [∃T.M]
(62)

C ` ty ⇒ τ

C ` (ty)⇒ τ
(63)

Comments:

(60) Recall that for τ (k) θ to be defined, θ must have kind k.

Type-expression Rows C ` tyrow ⇒ %

C ` ty ⇒ τ 〈C ` tyrow ⇒ %〉
C ` lab : ty 〈 , tyrow〉 ⇒ {lab 7→ τ}〈+ %〉

(64)

Comment: The syntactic constraints ensure lab /∈ Dom %.

5.11 Further Restrictions

There are a few restrictions on programs which should be enforced by a
compiler, but are better expressed apart from the preceding Inference Rules.
They are:

1. For each occurrence of a record pattern containing a record wildcard,
i.e. of the form {lab1=pat1,···,labm=patm,...} the program context
must determine uniquely the domain {lab1, ···, labn} of its row type,
wherem ≤ n; thus, the context must determine the labels {labm+1, ···, labn}
of the fields to be matched by the wildcard. For this purpose, an ex-
plicit type constraint may be needed.

2. In a match of the form pat1 => exp1| ··· | patn => expn the pattern
sequence pat1, . . . , patn should be irredundant; that is, each pat j must
match some value (of the right type) which is not matched by pat i for
any i < j. In the context fn match, the match must also be exhaustive;
that is, every value (of the right type) must be matched by some pat i.
The compiler must give warning on violation of these restrictions, but
should still compile the match. The restrictions are inherited by de-
rived forms; in particular, this means that in the function-value binding
vid atpat1 ··· atpatn〈: ty〉 = exp (consisting of one clause only), each
separate atpat i should be exhaustive by itself.

38 5 STATIC SEMANTICS FOR THE CORE

3. For each value binding pat = exp the compiler must issue a report
(but still compile) if pat is not exhaustive. This will detect a mistaken
declaration like val nil = exp in which the user expects to declare
a new variable nil (whereas the language dictates that nil is here a
constant pattern, so no variable gets declared). However, this warning
should not be given when the binding is a component of a top-level
declaration val tyidseq valbind; e.g. val x::l = exp1 and y = exp2 is
not faulted by the compiler at top level, but may of course generate a
Bind exception (see Section ??).

39

6 Static Semantics for Modules

6.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core.
The compound objects are those for the Core, augmented by those in Fig-
ure 12.

S or (FE,SE, TE, VE) ∈ Str = FunEnv × StrEnv × TyEnv × ValEnv
RS or S or (RS1, RS2) ∈ RecStr = Str ∪ (RecStr× RecStr)

M or RS or F ∈ Mod = RecStr ∪ Fun
F or ∀T.M → X ∈ Fun = TyNameSet×Mod× ExMod

X or ∃T.M ∈ ExMod = Ex(Mod) = TyNameSet×Mod
G or ΛT.M ∈ Sig = Par(Mod) = TyNameSet×Mod

GE ∈ SigEnv = SigId
fin→ Sig

FE ∈ FunEnv = FunId
fin→ Fun

SE ∈ StrEnv = StrId
fin→ RecStr

Figure 12: Further Compound Semantic Objects

The prefixes ΛT. , ∃T, .and ∀T. → in parameterised objects, existential
objects and functors bind type names. Certain operations require a change of
bound names in semantic objects; see for example Section 6.2. When bound
type names are changed, we demand that all of their attributes (i.e. equality
and kind) are preserved.

The operations of projection, injection and modification are as for the
Core, with the following additions:

For a recursive structure RS, we define (S of RS) = S if RS = S and
(S of RS) = (S of RS2) if RS = (RS1, RS2). The operation projects the type
of the body of a recursive structure.

We overload the notation for environment modification C+{modid 7→M}
to mean C + {strid 7→ RS} if M = RS and where strid = modid ; and C +
{funid 7→ RS} if M = F and where funid = modid . The former extends the
structure environment of C, interpreting the module identifier as a structure
identifier, the latter extends the functor environment of C, interpreting the
module identifier as a functor identifier. Which interpretation to apply is
uniquely determined by the form of M .

40 6 STATIC SEMANTICS FOR MODULES

6.2 Type Realisation

A (type) realisation is a map ϕ : TyName → TypeFcn such that t and ϕ(t)
have the same kind; in particular, if t admits equality then so does ϕ(t).

The support Suppϕ of a type realisation ϕ is the set of type names t for
which ϕ(t) 6= t. The yield Yieldϕ of a realisation ϕ is the set of type names
which occur in some ϕ(t) for which t ∈ Suppϕ.

Realisations ϕ are extended to apply to all semantic objects; their effect
is to replace each name t by ϕ(t) (performing β-reductions as necessary
to preserve the structure of constructed types, type applications and type
functions). In applying ϕ to an object with bound names, such as a signature
ΛT.M, first bound names must be changed so that, for each binding prefix
(ΛT. , ∃T. and ∀T. →),

T ∩ (Suppϕ ∪ Yieldϕ) = ∅ .

6.3 Signature Instantiation

A module M is an instance of a signature G = ΛT.M ′, written G ≥ M , if
there exists a realisation ϕ such that ϕ(M ′) = M and Suppϕ ⊆ T .

6.4 Functor Instantiation

An object M → X is called a functor instance. Given F = ∀T1.M1 → X1,
a functor instance M2 → X2 is an instance of F , written F ≥ M2 → X2,
if there exists a realisation ϕ such that ϕ(M1 → X1) = M2 → X2 and
Suppϕ ⊆ T1.

6.5 Enrichment

In matching a (recursive) structure to a signature, the structure will be al-
lowed both to have more components, and to be more polymorphic, than
(an instance of) the signature. In matching an functor to a signature, the
functor will be allowed to be more polymorphic, have a less rich domain, and
have a richer range than (an instance of) the signature.

Precisely, we define enrichment of structures, recursive structures, func-
tors, modules, existential modules, and type structures by mutual recursion
as follows.

6.5 Enrichment 41

• A structure S1 = (FE1, SE1, TE1, VE1) enriches another structure S2 =
(FE2, SE2, TE2, VE2), written S1 � S2, if

1. DomFE1 ⊇ DomFE2, and FE1(funid) � FE2(funid) for all funid ∈
DomFE2,

2. DomSE1 ⊇ DomSE2, and SE1(strid) � SE2(strid) for all strid ∈
DomSE2,

3. DomTE1 ⊇ DomTE2, and TE1(tycon) � TE2(tycon) for all tycon ∈
DomTE2, and

4. DomVE1 ⊇ DomVE2, and VE1(vid) � VE2(vid) for all vid ∈
DomVE2.

• A recursive structure RS1 enriches another recursive structure RS2,
written RS1 � RS2, if

1. RS2 = S2 and (S of RS1) � S2 for some (non-recursive) structure
S2, or

2. RS2 = (RS3, RS4) and (S of RS1) � RS3 and (S of RS1) � RS4 for
some recursive structures RS3 and RS4.

• A functor F1 = ∀T1.M1 → X1 enriches another functor F2 = ∀T2.M2 →
X2, written F1 � F2, if there exists a realisation ϕ such that:

1. T2 ∩ tynames(F1) = ∅,
2. M2 � ϕ(M1),

3. ϕ(X1) � X2, and

4. Suppϕ ⊆ T1.

• A module M1 enriches another module M2, written M1 �M2, if:

1. M1 = RS1, M2 = RS2 and RS1 � RS2 for some recursive structures
RS1 and RS2, or

2. M1 = F1, M2 = F2 and F1 � F2 for some functors F1 and F2.

• An existential module X1 = ∃T1.M1 enriches another existential mod-
ule X2 = ∃T2.M2, written X1 � X2, if:

1. T1 ∩ tynames (X2) = ∅ and M1 � ϕ2(M2) for some realisation ϕ2

with Suppϕ2 ⊆ T2.

42 6 STATIC SEMANTICS FOR MODULES

• Finally, a type structure (θ1, VE1) enriches another type structure (θ2, VE2),
written (θ1, VE1) � (θ2, VE2), if

1. θ1 and θ2 have the same kind,

2. θ1 = θ2, and

3. Either VE1 = VE2 or VE2 = {}.

6.6 Signature Matching

A module M matches a signature G if there exists a module M− such that
G ≥M− ≺M . Thus matching is a combination of instantiation and enrich-
ment. For any G and M that must be matched during elaboration from the
initial context, there will be at most one such M−.

6.7 Equivalence of Package Types

We identify package types [X] ∈ PackType that differ only in a kind and at-
tribute preserving renaming of bound type names. Moreover, since we do not
want to distinguish between package types that differ merely in a reordering
of components, we identify package types that are equivalent according to
the following definition.

Two package types [X1] and [X2] are equivalent if, and only if, X1 � X2

and X2 � X1 (each enriches the other).

6.8 Applicative Module Expressions

To preserve the type soundness property in the presence of both applica-
tive functors and first-class modules (Core expressions of package type),
the set ModExp of module expressions is divided into a further subclass,
the set of applicative module expressions. Informally, a module expression
modexp is applicative only if it contains no structure or functor binding of
the form strid as sigexp = exp or funid as sigexp = exp, unless that bind-
ing occurs within the declaration dec of a Core sub-expression of the form
let dec in exp end. Formally, a module expression is applicative if, after
replacing derived forms by their equivalent forms, it can be generated by the
following grammar from the non-terminal appmodexp in Figure 13:

6.8 Applicative Module Expressions 43

appdec ::= val tyidseq valbind
type typbind
datatype datbind
datatype tycon = datatype tyconpath
abstype datbind with appdec end

exception exbind
local appdec1 in appdec2 end

open longstrid1 ··· longstridn
structure appstrbind
functor appfunbind
signature sigbind

appdec1 〈;〉 appdec2

infix 〈d〉 vid1 ··· vidn
infixr 〈d〉 vid1 ··· vidn
nonfix vid1 ··· vidn

appstrbind ::= strid = appmodexp 〈and appstrbind〉
appfunbind ::= funid = appmodexp 〈and appfunbind〉
appatmodexp ::= struct appdec end

〈op〉longmodid
let appdec in modexp end

(appmodexp)

appmodexp ::= appatmodexp
appmodexp appatmodexp
appmodexp : sigexp
appmodexp :> sigexp
functor (modid:sigexp) => modexp
functor modid:sigexp => modexp
rec (strid:sigexp)appmodexp

Figure 13: Applicative Module Expressions

44 6 STATIC SEMANTICS FOR MODULES

Type soundness is preserved by the inference rules by ensuring that if
modexp occurs as the body of a functor, i.e. a phrases of the form

functor modid:sigexp => modexp

or
functor (modid:sigexp) => modexp,

then modexp must be applicative.
This restriction applies only to functor bodies; in particular, it does not

preclude declarations of the form strid as sigexp = exp or funid as sigexp = exp
from occurring in top-level declarations or structures, nor does it preclude
them from occurring within Core expressions of the form let dec in exp end.

6.9 Resolution of Long Module Identifiers

Although StrId and FunId are regarded as disjoint by the semantics, in the
sense that structures and functors reside in separate name-spaces, the syntax
of structure and functor identifiers is, in fact, shared. A priori, the module
expression 〈op〉longmodid may refer to a either a functor or a structure so
the semantics must dictate how to resolve this ambiguity. Fortunately, the
context of the phrase often rules out one alternative, on the grounds that
choosing that alternative would force elaboration to fail. In particular, if
〈op〉longmodid occurs as the right hand side of a structure (functor) binding,
then longmodid must be interpreted as an element of longStrId (longFunId);
if 〈op〉longmodid occurs in the functor position of an application, then long-
modid must be interpreted as an element of longFunId; if 〈op〉longmodid is
constrained by a signature then the signature forces a unique interpretation
on longmodid (depending on whether the signature specificies a structure
or functor). Similarly, if 〈op〉longmodid occurs as the argument of a functor
application, then the functor’s domain forces a unique interpretation on long-
modid. Indeed, the only ambiguity that remains occurs when 〈op〉longmodid
is the body of a functor. In this case, the optional prefix 〈op〉 is used to resolve
the ambiguity: the absence of op signals that longmodid refers to structure;
the presence of op signals that op longmodid refers to a functor. When the
interpretation of 〈op〉longmodid is already determined by the context, the
optional prefix 〈op〉 has no effect.

Since this method of disambiguation relies on type informatifon it is for-
malised within the static semantic rules. In the rules for elaborating module

6.10 Inference Rules 45

expressions, the context of the current phrase is summarized by an expecta-
tion:

ex ∈ Expectation= {s, f, m}

Of the three values: s indicates that a structure is expected; f indicates
that a functor is expected; finally, m indicates that a structure or a functor
is expected, so that the status of 〈op〉longmodid must be resolved by 〈op〉.

The inference rules rely on two auxilliary functions that determine the
expectation for a subderivation depending on the form of a signature or the
domain of a functor:

expect() ∈ Sig→ Expectation

expect(G) =

{
s if G = ΛT.RS
f if G = ΛT.F

expect() ∈ Fun→ Expectation

expect(F) =

{
s if F = ∀T.RS → X
f if F = ∀T.F ′ → X

6.10 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of
the form

A ` phrase ⇒ A′

to be inferred, where A is typically a context, phrase is a phrase of the
Modules language, and A′ is a semantic object. The convention for options
is as in the Core semantics.

Long Structure Identifiers C ` longstrid ⇒ RS

strid ∈ DomC

C ` strid ⇒ C(strid)
(65)

C ` longstrid ⇒ RS SE = SE of (S of RS) strid ∈ DomSE

C ` longstrid .strid ⇒ SE(strid)
(66)

46 6 STATIC SEMANTICS FOR MODULES

Long Functor Identifiers C ` longfunid ⇒ F

funid ∈ DomC

C ` funid ⇒ C(funid)
(67)

C ` longstrid ⇒ RS FE = FE of (S of RS) funid ∈ DomFE

C ` longstrid .funid ⇒ FE(funid)
(68)

Long Module Identifiers C `ex 〈op〉 longmodid ⇒M

C ` longstrid ⇒ RS longstrid = longmodid

C `s 〈op〉 longmodid ⇒ RS
(69)

C ` longfunid ⇒ F longfunid = longmodid

C `f 〈op〉 longmodid ⇒ F
(70)

C ` longstrid ⇒ RS longstrid = longmodid

C `m longmodid ⇒ RS
(71)

C ` longfunid ⇒ F longfunid = longmodid

C `m op longmodid ⇒ F
(72)

Atomic Module Expressions C `ex atmodexp ⇒ X

C ` dec ⇒ ∃T.E
C `ex struct dec end⇒ ∃T.(FE of E, SE of E, TE of E, VE of E)

(73)

C `ex 〈op〉 longmodid ⇒M

C `ex 〈op〉 longmodid ⇒ ∃∅.M
(74)

C ` dec ⇒ ∃T1.E T1 ∩ tynamesC = ∅
C + E `ex modexp ⇒ ∃T2.M T2 ∩ T1 = ∅
C `ex let dec in modexp end⇒ ∃T1 ∪ T2.M

(75)

C `ex modexp ⇒ X

C `ex (modexp)⇒ X
(76)

Comments:

6.10 Inference Rules 47

(73) The resulting structure contains the functor, structure, type and value
components of E. Signatures declared in dec are local to dec and not
visible from outside the structure.

(75) The side condition T1 ∩ tynamesC, here and elsewhere, ensures that
eliminating the first existential quantifier does not capture type names
occurring free in the context. The side condition can always be satisfied
by renaming bound names in ∃T1.E. Existentially quantifying over
both T1 and T2 in the result ensures that the hypothetical type names
in T1 do not escape their scope.

Module Expressions C `ex modexp ⇒ X

C `ex atmodexp ⇒ X

C `ex atmodexp ⇒ X
(77)

C `f modexp ⇒ ∃T.F C `expect(F) atmodexp ⇒ ∃T ′.M
T ∩ (T ′ ∪ tynamesM) = ∅ T ′ ∩ tynamesF = ∅
F ≥M ′ → ∃T ′′.M ′′ M �M ′ T ′′ ∩ (T ∪ T ′) = ∅

C `ex modexp atmodexp⇒ ∃T ∪ T ′ ∪ T ′′.M ′′

(78)

C ` sigexp ⇒ G C `expect(G) modexp ⇒ ∃T.M
T ∩ tynamesG = ∅ G ≥M ′ �M

C `ex modexp : sigexp⇒ ∃T.M ′ (79)

C ` sigexp ⇒ ΛT ′.M ′ C `expect(ΛT ′.M ′) modexp ⇒ ∃T.M
T ∩ tynames(ΛT ′.M ′) = ∅ ΛT ′.M ′ ≥M ′′ �M

C `ex modexp :> sigexp⇒ ∃T ′.M ′ (80)

modexp is applicative
C ` sigexp ⇒ ΛT.M
T ∩ tynamesC = ∅
C + {modid 7→M} `m modexp ⇒ X

C `ex functor (modid:sigexp) => modexp⇒ ∃∅.(∀T.M → X)
(81)

48 6 STATIC SEMANTICS FOR MODULES

modexp is applicative
C ` sigexp ⇒ ΛT.M

T ∩ tynamesC = ∅ T = {tK1
1 , . . . , tKn

n }
C + {modid 7→M} `m modexp ⇒ ∃T ′.M ′

T ′′ ∩ (T ∪ tynamesM ∪ tynames(∃T ′.M ′)) = ∅
ϕ = {uK 7→ uK1→···Kn→K t1 ··· tn; uK ∈ T ′}
T ′′ = {uK1→···Kn→K ; uK ∈ T ′}

C `ex functor modid:sigexp => modexp⇒ ∃T ′′.(∀T.M → ∃∅.ϕ(M ′))
(82)

C ` sigexp ⇒ ΛT.RS
T ∩ tynamesC = ∅
C + {strid 7→ RS} `s modexp ⇒ ∃T ′.RS
T ′ ∩ (T ∪ tynamesRS) = ∅
RS ′ � RS

C `ex rec (strid:sigexp)modexp⇒ ∃T ∪ T ′.(RS,RS ′)
(83)

Comments:

(??) The side conditions on T , T ′ and T ′′ can always be satisfied by renam-
ing bound names. T is the set of existential type names introduced
by the functor. T ′ is the set of existential type names introduced by
the argument. T ′′ is the set of existential type names introduced by
the functor body. The side conditions on T , T ′, and T ′′ ensure that
eliminating the existential quantifiers does not capture any free or hy-
pothetical type names. Existentially quantifying over T ∪ T ′ as well as
T ′′ in the result type M ′′ prevents any hypothetical type names, that
may occur free in actual range of the application, from escaping their
scope.

Let F = ∀TF .MF → XF . Let ϕ be a realisation such that ϕ(MF →
XF) = M ′ → ∃T ′′.M ′′ (with Suppϕ ⊆ TF). Sharing between the
formal domain and the formal range of the functor is represented by
occurrences of the same type name of TF in both MF and XF . These
shared occurrences are preserved by ϕ, yielding sharing between the
actual domain M and the actual range type ∃T ′′.M ′′ of this functor
application.

(81),(82) In both rules, the functor body modexp is elaborated in the ex-
tended context C+{modid 7→M}. The side condition T∩tynamesC =

6.10 Inference Rules 49

∅, which may always be satisfied by a renaming of bound names in
ΛT.M , ensures that the type names in T are treated as parameters
during elaboration of the body, so that M represents a generic instance
of the signature. Thus the functor may be applied at any realisation
of these parameters and, in particular, to any argument whose type
matches the signature ΛT.M .

(81) The type of the functor body is an existentially quantified module
type X of the form ∃T ′.M ′. This type determines the range of the
functor ∀T.M → X = ∀T.M → ∃T ′.M ′. Observe that the scope of the
existential quantifier implies that distinct applications of this functor
will introduce distinct abstract types (even when the functor is applied
at the same realisation). Thus functors of this form have a generative
semantics.

(82) Elaborating the body introduces existential type names T . In general,
because modexp is elaborated in the extended context C + {modid 7→
M}, names in T ′ may have hidden functional dependencies on the type
parameters T of the formal argument modid. These dependencies are
made explicit by applying the realisation ϕ to M ′. This effectively
skolemises each occurrence in M ′ of a name u ∈ T ′ by the names in T .
The kinds of names in T ′ must be adjusted to reflect this, yielding the
set T ′′. Having parameterised names in T ′ by their implicit arguments,
the existential quantifier can be moved from its scope within the functor
range, i.e. ∃T ′.M ′, to a scope that encloses the entire functor, yielding
the existential module ∃T ′′.(∀T.M → ∃∅.ϕ(M ′)).

Observe that the scope of the existential quantifier implies that distinct
applications of this functor, at equivalent realisations, will yield equiv-
alent abstract types. Thus functors of this form have an applicative
semantics.

50 6 STATIC SEMANTICS FOR MODULES

Structure Bindings C ` strbind ⇒ ∃T.SE
C `s modexp ⇒ ∃T.RS
〈C ` strbind ⇒ ∃T ′.SE〉
〈T ∩ (T ′ ∪ tynamesSE) = ∅〉
〈T ′ ∩ (tynamesRS) = ∅〉

C ` strid = modexp 〈and strbind〉 ⇒
∃T 〈∪T ′〉.{strid 7→ RS} 〈+ SE〉

(84)

C ` sigexp ⇒ ΛT.RS
C ` exp ⇒ [∃T.RS]
〈C ` strbind ⇒ ∃T ′.SE〉
〈T ∩ (T ′ ∪ tynamesSE) = ∅〉
〈T ′ ∩ (tynamesRS) = ∅〉

C ` strid as sigexp = exp 〈and strbind〉 ⇒
∃T 〈∪T ′〉.{strid 7→ RS} 〈+ SE〉

(85)

Functor Bindings C ` funbind ⇒ ∃T.FE

C `f modexp ⇒ ∃T.F
〈C ` funbind ⇒ ∃T ′.FE〉
〈T ∩ (T ′ ∪ tynamesFE) = ∅〉
〈T ′ ∩ (tynamesF) = ∅〉

C ` funid = modexp 〈and funbind〉 ⇒
∃T 〈∪T ′〉.{funid 7→ F} 〈+ FE〉

(86)

C ` sigexp ⇒ ΛT.F
C ` exp ⇒ [∃T.F]
〈C ` funbind ⇒ ∃T ′.FE〉
〈T ∩ (T ′ ∪ tynamesFE) = ∅〉
〈T ′ ∩ (tynamesF) = ∅〉

C ` funid as sigexp = exp 〈and funbind〉 ⇒
∃T 〈∪T ′〉.{funid 7→ F} 〈+ FE〉

(87)

Signature Bindings C ` sigbind ⇒ GE

C ` sigexp ⇒ G 〈C ` sigbind ⇒ GE〉
C ` sigid = sigexp 〈and sigbind〉 ⇒ {sigid 7→ G} 〈+ GE〉

(88)

6.10 Inference Rules 51

Signature Expressions C ` sigexp ⇒ G

C ` spec ⇒ ΛT.(GE,FE, SE, TE, VE)

C ` sig spec end⇒ ΛT.(FE,SE, TE, VE)
(89)

sigid ∈ DomC

C ` sigid ⇒ C(sigid)
(90)

C ` sigexp ⇒ ΛT.RS S = S of RS
C ` tyidseq ⇒ (α(k), IE) C + IE ` ty ⇒ τ

({}, ({}, FE of S, SE of S, TE of S, VE of S)) ` longtycon ⇒ (t, VE)
t ∈ T t has arity k

(T \ {t}) ∩ tynames Λα(k).τ = ∅
ϕ = {t 7→ Λα(k).τ} Λα(k).τ admits equality, if t does

ϕ(S) well-formed

C ` sigexp where type tyidseq longtycon = ty⇒ ΛT \ {t}.ϕ(RS)
(91)

C ` sigexp1 ⇒ ΛT.M
T ∩ tynamesC = ∅
C + {modid 7→M} ` sigexp2 ⇒ ΛT ′.M ′

C ` functor (modid : sigexp1) -> sigexp2 ⇒ Λ∅.(∀T.M → ∃T ′.M ′)
(92)

C ` sigexp1 ⇒ ΛT.M

T ∩ tynamesC = ∅ T = {tK1
1 , . . . , tKn

n }
C + {modid 7→M} ` sigexp2 ⇒ ΛT ′.M ′

T ′′ ∩ (T ∪ tynamesM ∪ tynames(ΛT ′.M ′)) = ∅
ϕ = {uK 7→ uK1→···Kn→K t1 ··· tn; uK ∈ T ′}
T ′′ = {uK1→···Kn→K ; uK ∈ T ′}

C ` functor modid : sigexp1 -> sigexp2 ⇒ ΛT ′′.(∀T.M → ∃∅.ϕ(M ′))
(93)

52 6 STATIC SEMANTICS FOR MODULES

C ` sigexp1 ⇒ ΛT.RS
T ∩ tynamesC = ∅
C + {strid 7→ RS} ` sigexp2 ⇒ ΛT ′.RS ′

T ′ ∩ (T ∪ tynamesRS) = ∅
ϕ(RS ′) � ϕ(RS)
Suppϕ = T
T ∩ Yield(ϕ) = ∅

C ` rec (strid:sigexp)sigexp⇒ ΛT ′.ϕ(RS,RS ′)
(94)

Comments:

(89) The resulting signature contains the functor, structure, type and value
components of E. Signatures declared in spec are local to spec and not
visible from the signature.

(94) An opaque functor signature specifies a set of functors. A functor that
“matches” the signature functor (modid : sigexp1) -> sigexp2 must
be applicable to any actual argument whose type “matches” sigexp1.
Thus sigexp1 specifies the type parameters T and domain M of any
matching functor. The signature expression sigexp2, which is elabo-
rated in the extended context C + {modid 7→ M}, specifies the range
of the matching functor, up to some opaque realisation of T ′.

In this way, the type parameters arising sigexp1 determine the poly-
morphism of the specified functors, while the type parameters arising
from sigexp2 hide variation in the range of the specified functors.

(93) A transparent functor signature specifies a family of functors. A functor
that “matches” the signature functor modid : sigexp1 -> sigexp2 must
be applicable to any actual argument whose type “matches” sigexp1.
Thus sigexp1 specifies the type parameters T and domain M of any
matching functor. The range signature expression sigexp2, which is
elaborated in the extended context C + {modid 7→ M}, specifies the
result of applying such a functor.

If sigexp2 elaborates to a signature ΛT ′.M ′, then any type names in T ′

represent types that have an unspecified realisation in sigexp2. Because
the types declared in the body of a matching functor may depend on
the functor’s type parameters, the rule allows type names in T ′ to
have a functional dependency on the type parameters in T . Applying

6.10 Inference Rules 53

the realisation ϕ to M ′ caters for these dependencies. The realisation
parameterises each occurrence in M ′ of a name u ∈ T ′ by the names in
T . The kinds of names in T ′ must be adjusted to reflect this, resulting
in the name set T ′′. Having modified names in T ′ to take account of
their implicit dependencies on T , the scope of the parameterisation over
T ′ can be extended from the range, i.e. ΛT ′.M ′, to a scope that encloses
the entire functor, yielding the signature ΛT ′′.(∀T.M → ∃∅.ϕ(M ′)).

In this way, the type parameters arising sigexp1 determine the polymor-
phism of the specified functors, while the type parameters arising from
sigexp2 index variations in the range of the specified functors. These
parameters represent unspecified argument-result type dependencies.

Specifications C ` spec ⇒ ΛT.E

C ` tyidseq ⇒ (α1, ···, αk), IE C + IE ` valdesc ⇒ VE

C ` val tyidseq valdesc ⇒ Λ∅.ClosCVE in Env
(95)

C ` typdesc ⇒ ΛT.TE ∀(t, VE) ∈ T, t does not admit equality

C ` type typdesc⇒ ΛT.TE in Env
(96)

C ` typdesc ⇒ ΛT.TE ∀(t, VE) ∈ T, t admits equality

C ` eqtype typdesc⇒ ΛT.TE in Env
(97)

C + TE ` datdesc ⇒ VE, TE
T = {t; (t, VE ′) ∈ RanTE}
T ∩ tynamesC = ∅
TE maximises equality

C ` datatype datdesc⇒ ΛT.(VE, TE) in Env
(98)

C ` tyconpath ⇒ (θ, VE)
TE = {tycon 7→ (θ, VE)}

C ` datatype tycon = datatype tyconpath⇒
Λ∅.(VE, TE) in Env

(99)

C ` exdesc ⇒ VE

C ` exception exdesc⇒ Λ∅.VE in Env
(100)

54 6 STATIC SEMANTICS FOR MODULES

C ` strdesc ⇒ ΛT.SE

C ` structure strdesc⇒ ΛT.SE in Env
(101)

C ` fundesc ⇒ ΛT.FE

C ` functor fundesc⇒ ΛT.FE in Env
(102)

C ` sigbind ⇒ GE

C ` signature sigbind⇒ Λ∅.GE in Env
(103)

C ` sigexp ⇒ ΛT.(FE,SE, TE, VE)

C ` include sigexp⇒ ΛT.({}, FE, SE, TE, VE)
(104)

C ` ⇒ Λ∅.({}, {}, {}, {}, {})
(105)

C ` spec1 ⇒ ΛT1.E1 T1 ∩ tynamesC = ∅
C + E1 ` spec2 ⇒ ΛT2.E2 DomE1 ∩DomE2 = ∅
T2 ∩ (T1 ∪ tynamesE1) = ∅

C ` spec1 〈;〉 spec2 ⇒ ΛT1 ∪ T2.E1 + E2

(106)

C ` spec ⇒ ΛT.E
({}, E) ` longtycon i ⇒ (ti, VEi), i = 1..n

t1, . . . , tn have arity k
t ∈ {t1, . . . , tn} t admits equality, if some ti does
{t1, . . . , tn} ⊆ T ϕ = {t1 7→ t, . . . , tn 7→ t}

C ` spec sharing type longtycon1 = ··· = longtyconn ⇒
ΛT \ ({t1, . . . , tn} \ {t}).ϕ(E)

(107)

Comments:

(95) VE is determined by C and valdesc.

(96)–(98) The type names in T are bound and thus parameters of the re-
sulting signature.

(100) VE is determined by C and exdesc and contains monotypes only.

(106) Note that no sequential specification is allowed to specify the same
identifier twice.

6.10 Inference Rules 55

Value Descriptions C ` valdesc ⇒ VE

C ` ty ⇒ τ 〈C ` valdesc ⇒ VE〉
C ` vid : ty 〈and valdesc〉 ⇒ {vid 7→ (τ, v)} 〈+ VE〉

(108)

Type Descriptions C ` typdesc ⇒ ΛT.TE

C ` tyidseq ⇒ (α(k), VE)
t has arity k

〈 C ` typdesc ⇒ ΛT.TE t 6∈ T 〉
C ` tyidseq tycon 〈and typdesc〉 ⇒ Λ{t}〈∪T 〉.{tycon 7→ (t, {})}〈+TE〉

(109)
Comment: Note that the value environment in the resulting type structure

must be empty. For example, datatype s = C type t sharing type t = s

is a legal specification, but the type structure bound to t does not bind any
value constructors.

Datatype Descriptions C ` datdesc ⇒ VE, TE

C ` tyidseq ⇒ (α(k), IE)
C + IE, α(k) t ` condesc ⇒ VE

〈C ` datdesc ⇒ VE ′, TE ′ ∀(t′, VE ′′) ∈ RanTE, t 6= t′〉
C ` tyidseq tycon = condesc 〈and datdesc〉 ⇒

ClosCVE〈+ VE ′〉, {tycon 7→ (t,ClosCVE)} 〈+ TE ′〉

(110)

Constructor Descriptions C, τ ` condesc ⇒ VE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` condesc ⇒ VE〉〉
C, τ ` vid 〈of ty〉 〈〈 | condesc〉〉 ⇒

{vid 7→ (τ, c)} 〈+ {vid 7→ (τ ′ → τ, c)} 〉 〈〈+ VE〉〉

(111)

Exception Descriptions C ` exdesc ⇒ VE

〈C ` ty ⇒ τ〉 〈〈C ` exdesc ⇒ VE〉〉
C ` vid 〈of ty〉 〈〈and exdesc〉〉 ⇒
{vid 7→ (exn, e)} 〈+ {vid 7→ (τ → exn, e)}〉 〈〈+ VE〉〉

(112)

56 6 STATIC SEMANTICS FOR MODULES

Structure Descriptions C ` strdesc ⇒ ΛT.SE

C ` sigexp ⇒ ΛT.RS
〈C ` strdesc ⇒ ΛT ′.SE〉
〈T ∩ (T ′ ∪ tynamesSE) = ∅〉
〈T ′ ∩ (tynamesRS) = ∅〉

C ` strid : sigexp 〈and strdesc〉 ⇒
ΛT 〈∪T ′〉.{strid 7→ RS} 〈+ SE〉

(113)

Functor Descriptions C ` fundesc ⇒ ΛT.FE

C ` sigexp ⇒ ΛT.F
〈C ` fundesc ⇒ ΛT ′.FE〉
〈T ∩ (T ′ ∪ tynamesFE) = ∅〉
〈T ′ ∩ (tynamesF) = ∅〉

C ` funid : sigexp 〈and fundesc〉 ⇒
ΛT 〈∪T ′〉.{funid 7→ F} 〈+ FE〉

(114)

57

A Appendix: Derived Forms

Several derived grammatical forms are provided in the Core; they are pre-
sented in Figures 14, 15 and 16. Each derived form is given with its equivalent
form. Thus, each row of the tables should be considered as a rewriting rule

Derived form =⇒ Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed
into a phrase of the bare language. See Appendix ?? for the full Core gram-
mar, including all the derived forms.

In the derived forms for tuples, in terms of records, we use n to mean the
ML numeral which stands for the natural number n.

Note that a new phrase class FvalBind of function-value bindings is in-
troduced, accompanied by a new declaration form fun tyidseq fvalbind . The
mixed forms val tyidseq rec fvalbind , val tyidseq fvalbind and fun tyidseq
valbind are not allowed – though the first form arises during translation into
the bare language.

The following notes refer to Figure 16:

• There is a version of the derived form for function-value binding which
allows the function identifier to be infixed; see Figure ?? in Appendix ??.

• In the two forms involving withtype , the identifiers bound by dat-
bind and by typbind must be distinct. Then the transformed binding
datbind′ in the equivalent form is obtained from datbind by expanding
out all the definitions made by typbind. More precisely, if typbind is

tyidseq1 tycon1 =ty1 and ··· and tyidseqn tyconn =tyn

then datbind′ is the result of simultaneous replacement (in datbind) of
every type expression tyseq i tycon i (1 ≤ i ≤ n) by the corresponding
defining expression

ty i{tyseq i/tyidseq i}

Figure 17 shows derived forms for functors. They allow functors to take,
say, a single type or value as a parameter, in cases where it would seem
clumsy to “wrap up” the argument as a structure expression.

Finally, Figure 18 shows the derived forms for specifications and sig-
nature expressions. The last derived form for specifications allows sharing

58 A APPENDIX: DERIVED FORMS

between structure identifiers as a shorthand for type sharing specifications.
The phrase

spec sharing longstrid1 = ··· = longstridk

is a derived form whose equivalent form is
spec
sharing type longtycon1 = longtycon ′1
···
sharing type longtyconm = longtycon ′m

determined as follows. First, note that spec specifies a set of (possibly long)
type constructors and structure identifiers, either directly or via signature
identifiers and include specifications. Then the equivalent form contains all
type-sharing constraints of the form

sharing type longstrid i.longtycon = longstrid j.longtycon

(1 ≤ i < j ≤ k), such that both sides of the equation are long type construc-
tors specified by spec.

The meaning of the derived form does not depend on the order of the
type-sharing constraints in the equivalent form.

59

Derived Form Equivalent Form

Expressions exp
() { }

(exp1 , ··· , expn) {1=exp1, ···, n=expn} (n ≥ 2)
lab fn {lab=vid,...} => vid (vid new)
case exp of match (fn match)(exp)
if exp1 then exp2 else exp3 case exp1 of true => exp2

| false => exp3

exp1 orelse exp2 if exp1 then true else exp2

exp1 andalso exp2 if exp1 then exp2 else false

(exp1 ; ··· ; expn ; exp) case exp1 of () => (n ≥ 1)
···

case expn of () => exp
let dec in let dec in (n ≥ 2)

exp1 ; ··· ; expn end (exp1 ; ··· ; expn) end

while exp1 do exp2 let val rec vid = fn () => (vid new)
if exp1 then (exp2;vid()) else ()

in vid() end

[exp1 , ··· , expn] exp1 :: ··· :: expn :: nil (n ≥ 0)

Figure 14: Derived forms of Expressions

Derived Form Equivalent Form

Patterns pat
() { }

(pat1 , ··· , patn) {1=pat1, ··· , n=patn} (n ≥ 2)
[pat1 , ··· , patn] pat1 :: ··· :: patn :: nil (n ≥ 0)

Pattern Rows patrow
vid〈:ty〉 〈as pat〉 〈, patrow〉 vid = vid〈:ty〉 〈as pat〉 〈, patrow〉

Type Expressions ty
ty1 * ··· * tyn {1:ty1, ··· , n:tyn} (n ≥ 2)

Figure 15: Derived forms of Patterns and Type Expressions

60 A APPENDIX: DERIVED FORMS

Derived Form Equivalent Form

Function-value Bindings fvalbind
〈op〉vid = fn vid1=> ··· fn vidn=>
case (vid1, ··· , vidn) of

〈op〉vid atpat11···atpat1n〈:ty〉 = exp1 (atpat11,···,atpat1n)=>exp1〈:ty〉
|〈op〉vid atpat21···atpat2n〈:ty〉 = exp2 |(atpat21,···,atpat2n)=>exp2〈:ty〉
| ··· ··· | ··· ···
|〈op〉vid atpatm1···atpatmn〈:ty〉 = expm |(atpatm1,···,atpatmn)=>expm〈:ty〉

〈and fvalbind〉 〈and fvalbind〉
(m,n ≥ 1; vid1, ···, vidn distinct and new)

Declarations dec
fun tyidseq fvalbind val tyidseq rec fvalbind
datatype datbind withtype typbind datatype datbind′ ; type typbind
abstype datbind withtype typbind abstype datbind′

with dec end with type typbind ; dec end

(see note in text concerning datbind′)

Figure 16: Derived forms of Function-value Bindings and Declarations

61

Derived Form Equivalent Form

Structure Bindings strbind
strid : sigexp = modexp 〈and strbind〉 strid = modexp : sigexp 〈and strbind〉
strid :> sigexp = modexp 〈and strbind〉 strid = modexp :> sigexp 〈and strbind〉

Module Expressions modexp
(dec) (struct dec end)

Functor Bindings funbind
funid 〈(〉1modid1:sigexp1〈)〉1 funid = functor 〈(〉1modid1:sigexp1〈)〉1 =>

...
...

〈(〉nmodidn:sigexpn〈)〉n functor 〈(〉nmodidn:sigexpn〈)〉n =>

= modexp modexp
〈and funbind〉 〈and funbind〉
funid 〈(〉1modid1:sigexp1〈)〉1 funid = functor 〈(〉1modid1:sigexp1〈)〉1 =>

...
...

〈(〉mmodidm:sigexpm〈)〉m functor 〈(〉mmodidm:sigexpm〈)〉m =>

: sigexp ′ = modexp (modexp:sigexp ′)
〈and funbind〉 〈and funbind〉
funid 〈(〉1modid1:sigexp1〈)〉1 funid = functor 〈(〉1modid1:sigexp1〈)〉1 =>

...
...

〈(〉mmodidm:sigexpm〈)〉m functor 〈(〉mmodidm:sigexpm〈)〉m =>

:> sigexp ′ = modexp (modexp:>sigexp ′)
〈and funbind〉 〈and funbind〉
funid (spec) 〈: sigexp〉 = funid (stridν : sig spec end) =

modexp 〈and funbind〉 let open stridν in modexp〈: sigexp〉
end 〈and funbind〉

funid (spec) 〈:> sigexp〉 = funid (stridν : sig spec end) =

modexp 〈and funbind〉 let open stridν in modexp〈:>sigexp〉
end 〈and funbind〉

(n ≥ 1, m ≥ 0, stridν new)

Programs program
exp;〈program〉 val it = exp;〈program〉

Figure 17: Derived forms of Functors, Structure Bindings and Programs

62 A APPENDIX: DERIVED FORMS

Derived Form Equivalent Form

Specifications spec
type tyidseq tycon = ty include

sig type tyidseq tycon
end where type tyidseq tycon = ty

type tyidseq1 tycon1 = ty1 type tyidseq1 tycon1 = ty1

and ··· type ···
··· ···
and tyidseqn tyconn = tyn type tyidseqn tyconn = tyn

include sigid1 ··· sigidn include sigid1; ··· ; include sigidn
spec sharing longstrid1 = ··· spec

= longstridk sharing type longtycon1 =

longtycon ′1
···
sharing type longtyconm =

longtycon ′m

(see note in text concerning longtycon1, . . . , longtycon ′m)

Signature Expressions sigexp
sigexp sigexp
where type tyidseq1 longtycon1 = ty1 where type tyidseq1 longtycon1 = ty1

and type ··· where type ···
··· ···
and type tyidseqn longtyconn = tyn where type tyidseqn longtyconn = tyn

Figure 18: Derived forms of Specifications and Signature Expressions

