
A New Initial Basis for Standard ML
(DRAFT — DO NOT DISTRIBUTE)

June 26, 1995

Contents

Preface v

I Discussion 1

1 Introduction 3

1.1 Conventions and design philosophy � 4

1.2 Overview � 5

1.3 Things to discuss � 6

1.4 Known incompatiblities with the Definition � 6

2 General 10

3 Arithmetic types 11

3.1 Integers � 11

3.2 Words � 11

3.3 Real numbers � 12

3.4 Conversions � 13

3.5 Floating-point arrays � 13

4 Text 14

5 Aggregates 15

5.1 Vectors � 15

5.2 Arrays � 15

5.3 Monomorphic aggregates � 16

5.4 Lists � 16

i

6 System interface 18

6.1 Operating system interface � 18

6.2 Locale � 18

6.3 Directories and paths � 19

6.4 Time � 19

6.5 Misc. stuff � 19

7 UNIX interface 20

8 The Old structure 21

9 The top-level environment 22

9.1 Pre-loaded modules � 22

9.2 Top-level type, exception and value identifiers � � � � � � � � � � � � � � � � � � � 22

9.3 Infix identifiers � 23

9.4 Overloaded identifiers � 24

10 Language issues 25

10.1 Overloading � 25

10.2 Literals � 25

10.3 Character literals � 25

10.4 Numeric literals � 26

10.5 Vector literals � 27

II Manual pages 29

Array � 31

Bool � 34

Byte � 35

Char � 36

CONVERT INT � 38

CONVERT REAL � 39

CONVERT WORD � 40

Date � 41

Float � 42

ii

General � 43

INTEGER � 45

LargeInt � 48

List � 49

ListPair � 53

Locale � 54

MATH � 56

MONO ARRAY � 58

MONO VECTOR � 61

OS � 63

OS.FileSys � 64

OS.Path � 67

OS.Process � 69

PACK WORD � 71

Real � 73

String � 75

StringCvt � 77

Substring � 79

Time � 82

Timer � 85

Vector � 86

Word � 88

III Amendment: POSIX 1003.1b-1993 91

POSIX � 93

Posix.Error � 94

POSIX FLAGS � 96

Posix.FileSys � 97

Posix.IO � 101

Posix.ProcEnv � 104

Posix.Process � 106

Posix.Signal � 108

Posix.SysDB � 110

iii

Posix.Tty � 111

iv

Preface

The Initial Basis defined in the Definition of Standard ML [MTH90] is probably the weakest aspect

of the definition. In addition to the expected operators on the standard types (e.g., int, real, etc.),

it defines a small, and random, collection of utility functions. This basis is woefully inadequate for

serious programming, and as a result, each implementation of Standard ML has developed its own

extensions. This document is a proposal for a new, richer initial basis for SML, which we hope will

be adopted as a replacement for Appendices C and D of the Definition.

This document is organized into two parts. The first discusses the various pieces of the proposed

basis, and gives some rationale for the design. The second part is a complete set of manual pages

for each proposed module.

Contributors

This document is the result of a collaboration of the Standard ML of New Jersey effort and Harlequin

(what is the full name?):

Andrew W. Appel Princeton University, USA
Matthew Arcus Harlequin
Nick Barnes (ne Haines) Harlequin
Dave Berry Harlequin
Richard Brooksby Harlequin
Emden R. Gansner AT&T Bell Laboratories
Lal George AT&T Bell Laboratories
Lorenz Huelsbergen AT&T Bell Laboratories
Dave MacQueen AT&T Bell Laboratories
Brian Monahan Harlequin
John H. Reppy AT&T Bell Laboratories
Jon Thackray Harlequin
Peter Sestoft Royal Veterinary and Agricultural University, Denmark.

In addition, Peter Lee and Mads Tofte provided helpful comments on drafts of this document.

v

vi

Part I

Discussion

1

Chapter 1

Introduction

NOTE: THIS IS AN INCOMPLETE DRAFT

[[Need some words of introduction.]]

Summary

Summary of the proposal:

� Capitalization convention; rules for extensions of initial basis.

� Both arbitrary and fixed-precision integers; implementations are required to implement at

least one of these.

� Unsigned integers (called words), with literals.

� Multiple precisions of IEEE floating-point allowed. Floating-point semantics specified in

more detail, and with more operators, than in the Definition [MTH90].

� Mutable arrays and immutable vectors, with constant-time random-access.

� More comprehensive operators on lists, strings, arrays, vectors, etc.

� Industrial strength input/output; support for both text and binary I/O.

� A useful set of portable operating-system interfaces.

� Minor language changes: adding character literals, and adding overloading of integer, word

and of real literals at multiple precisions.

� Admendments for operating specific APIs.

3

4

1.1 Conventions and design philosophy

As long as we are doing everything all over again, we can revise the capitalization conventions of the

initial basis. We believe, for example, that value constructors should be capitalized to distinguish

them from variables; there seems to be wide agreement on this point.

The capitalization convention we use is:

� Alphanumeric value variables in mixed-case, with a leading lower-case letter. Examples:

map, openIn.

� Alphanumeric constructors with a leading upper-case letter. Examples: SOME, NONE, Jan,

Wed. The only exceptions to this are the identifiers nil, true, and false, where we bow to

tradition.

� Type identifiers are all lower case, with underscores.

� Signature identifiers in all caps, words separated by underscore.

� Structure and functor identifiers are mixed-case, with initial letter capitalized.

While capitalization is a touchy subject, we strongly believe that value constructors MUST have

a different capitalization from variables. Otherwise, misspelling of a constructor in a pattern-match

can result in an error not easily caught by the compiler.1

The initial basis is contained in a set of structures. Every type, exception constructor, and value

belongs to some structure, although some are also bound in the initial top-level environment. Infix

declarations and overloading are top-level definitions.

Functional arguments that are evaluated solely for their side-effects should be required to have

a return type of unit. For example, the list application function should have the type:

val app � ��a �� unit� �� �a list �� unit

We have tried to use consistent names and type shapes for similar operations. For example, the

function Array�app has the type:

val app � ��a �� unit� �� �a array �� unit

which has the same shape as List�app. Also, we rely heavily on the module system to structure

the name space (e.g., Array�app and List�app). This means that programmers who use open

liberally will have to change their ways.

1We believe that compilers should generate warning messages to enforce this convention.

Draft of June 26, 1995 7:03

5

Table 1.1: List of required generic signatures

Signature Description
CONVERT INT Conversions between two integer representations.
CONVERT REAL Conversions between two real representations.
CONVERT WORD Conversions between two unsigned representations.
FLOAT Generic IEEE floating-point module interface
INTEGER Generic integer module interface.
MATH Generic math library interface.
MONO ARRAY Mutable monomorphic arrays.
MONO VECTOR Immutable monomorphic vectors.
OS Generic interface to basic operating system features
REAL Generic real number interface.

1.2 Overview

[[This section is out of date]]

The proposal is organized in to chapters covering related collections of modules. These

groupings are:

General General purpose definitions

Arithmetic Integer and real arithmetic and mathematical functions.

Text Strings and characters

Aggregates Arrays and vectors of various kinds.

System Generic operating system interfaces.

Input/Output This includes a low-level extensible I/O interface, and both text and binary I/O

streams.

In addition, there is a chapter on the top-level environment and one on language issues, such as

overloading and literal values.

We have divided the modules into required and optional modules. Any conforming imple-

mentation of SML will provided implementations of all of the required modules. In addition, if

an implementation provides any of the services covered by the optional modules, then they shall

conform to the given interfaces. Many of the optional structures are variations on some generic

module (e.g., single and double-precision floating-point numbers); Table 1.1 gives a list of required

generic signatures. The required structures (and their signatures) are listed in Table 1.2. In addition

to the required structures, there are several required aliases:

Draft of June 26, 1995 7:03

6

structure LargestInt � INTEGER

structure LargestWord � WORD

structure LargestFloat � FLOAT

These are aliases for the largest representation of the given kind, and are used for converting between

different sizes (the LargestFloat structure is only required if the implementation provides one or

more Float structures).

[[Are the SysInt and SysWord structures aliases, or abstract?]]

Table 1.3, which follows the same format, gives the list of optional structures.

1.3 Things to discuss

In the discussion below, we use the term base type to refer to the scalar types provided by an

implementation (e.g., bool, int, ...).

Packing/unpacking values

The PackNBig and PackNLittle structures provide some support for marshalling/unmarshalling

of data, but we may want to extend this to other types. The most important of these are the float

types. We might add a pack and unpack operation to the FLOAT signature:

val pack � Word��word list �� real

val unpack � real �� Word��word list

The byte order for these operations would be architecture independent (say most-significant byte

first). The pack operation raises the exception Pack if the number of bytes is incorrect.

1.4 Known incompatiblities with the Definition

The revised basis is largely a conservative extension of the basis described in the Definition, but

there are a few points of incompatiblity:

� The Io exception.

� The I/O interfaces. Operations are not at top-level, and some of the functions have changed.

� The semantics of overloading.

� The implode and explode functions.

Draft of June 26, 1995 7:03

7

� The types of ord and chr.

� The math functions (sin, etc.) are not bound at top-level.

� The addition of word and character literals.

� The overloading of literals and the addition of default overloadings.

Draft of June 26, 1995 7:03

8

Table 1.2: List of required structures

Module Signature Description
Array ARRAY Mutable polymorphic arrays.
BinIO IMPERATIVE IO Binary input/output streams and operations.
BinIO�StreamIO STREAM IO

BinIO�StreamIO�PrimIO PRIM IO

Bool BOOL Operations on booleans.
Byte BYTE Conversions between Word8 and Char
Char CHAR Characters
CharArray MONO ARRAY Mutable arrays of characters
CharVector MONO VECTOR Immutable vectors of characters
Date DATE Calendar operations
General GENERAL General-purpose types, exceptions and miscellaneous

operations.
Integer INTEGER Default interger structure.
List LIST Utility functions on lists.
ListPair LIST PAIR Utility functions on pairs of lists.
Locale LOCALE Support for localization.
Math MATH Default math structure.
OS OS Basic operating system services.
OS�FileSys OS FILE SYS File status and directory operations
OS�Path OS PATH Pathname operations
OS�Process OS PROCESS Simple process manipulation operations
Real REAL Default real structure.
String STRING Utility functions on strings (cf., CharVector).
StringCvt STRING CVT Basic string conversions.
Substring SUB STRING Utility functions on pieces of strings.
TextIO TEXT IO Text input/output streams and operations.
TextIO�StreamIO STREAM IO

TextIO�StreamIO�PrimIO PRIM IO

Time TIME Representation of time values
Timer TIMER Timing operations
Vector VECTOR Immutable polymorphic vectors.
Word� WORD 8-bit unsigned integers
Word�Array MONO ARRAY Arrays of 8-bit unsigned integers
Word�Vector MONO VECTOR Vectors of 8-bit unsigned integers

Draft of June 26, 1995 7:03

9

Table 1.3: List of optional structures

Module Signature Description
BoolArray MONO ARRAY Mutable arrays of booleans
BoolVector MONO VECTOR Immutable vectors of booleans
Float FLOAT Default floating-point structure.
FloatArray MONO ARRAY Mutable arrays of default floating-point numbers.
FloatMath MATH Default floating-point math library.
FloatVector MONO VECTOR Immutable vectors of default floating-point numbers.
Floatn FLOAT Floating-point numbers (n-bits, for

n � f32� 64� 96�128g).
FloatnArray MONO ARRAY Mutable arrays of floating-point numbers (n-bit floats,

n � f32� 64� 96�128g).
FloatnMath MATH Floating-point math library (n-bit floats, n �

f32� 64� 96� 128g).
FloatnVector MONO VECTOR Immutable vectors of floating-point numbers (n-bit

floats, n � f32� 64� 96� 128g).
Intn INTEGER n-bit, fixed precision integers
LargeInt LARGE INT Arbitrary-precision integers.
POSIX POSIX POSIX 1003.1a binding
POSIX�FileSys POSIX FILE SYS File and directory operations
POSIX�IO POSIX IO Input/output primitives.
POSIX�Process POSIX PROC ENV Process primitives
POSIX�ProcEnv POSIX PROCESS Process environment primitives
POSIX�SysDB POSIX SYS DB System database primitives
POSIX�TTY POSIX TTY Terminal device primitives
SmallInt INTEGER Fixed-precision integers.
Word WORD Unsigned machine integers
Wordn WORD n-bit, unsigned machine integers
WordArray MONO ARRAY Mutable arrays of unsigned machine integers
WordnArray MONO ARRAY Mutable arrays of n-bit unsigned machine integers
WordVector MONO VECTOR Immutable vectors of unsigned machine integers
WordnVector MONO VECTOR Immutable vectors of n-bit unsigned machine integers

Draft of June 26, 1995 7:03

Chapter 2

General

We include the definition of the ref type here, rather than in a separate signature. This is because

the Ref structure would be trivial.

We do not include a specification of type ref because it has a “strange” equality property that

can’t be written down in a signature.

We include the datatype option because it is widely useful, and because we use it in some of

the other structures in this proposal.

A number of common exceptions (Subscript, Size, Overflow and Div) are defined in

General. These are the standard exceptions used by various modules to signal error conditions.

We include the exception Interrupt, but we believe it is a bad idea. Allowing an exception

to be raised asynchronously, from a source other than the program itself, has a nasty semantics that

defeats both compiler optimizations and human understanding of programs. In Standard ML of

New Jersey we use a different mechanism (first-class continuations) to allow signals to be sent to

programs; see [Rep90] for a more detailed discussion. In the absence of first-class continuations

(which we are not proposing to be made Standard), implementations may (but are not required to)

raise Interrupt upon an external interrupt signal.

10

Chapter 3

Arithmetic types

The Definition provides limited support for integer and real arithmetic, but does not address the

important issue of supporting multiple representations. This chapter presents standard interfaces

for integer and real types; the issue of literals is discussed in Section 10.2.

3.1 Integers

There are two possible implementations of integers:

� arbitrary precision (“bigints”),

� fixed precision (“smallints”).

Either one is acceptable in a Standard ML compiler, but some implementations may provide both,

and there should be a standard way to distinguish them.

We propose a signature INTEGER and two structures LargeInt and SmallInt matching the

signature. Finally, a structure Integer will be bound to either LargeInt or SmallInt in any

implementation. Implementations must provide at least one of the two integer structures.

[[Multiple fixed-precision integer representations may be provided. These will be named

Intn, where n is the number of bits of precision (e.g., Int��).]]

3.2 Words

Words are an abstraction of the underlying hardware’s machine word. They represent a sequence

of wordSize bits; an unsigned integer; and a machine-dependent encoding of the SmallInt�int

11

12

type.

The Word structure provides logical operations, both logical and arithmetic shifting, unsigned

arithmetic, and conversions between the integer type.

[[Multiple word representations may be provided. These will be named Wordn, where n

is the number of bits of precision (e.g., Word��).]]

3.3 Real numbers

Real numbers provide a fairly challenging problem of interface design. There are several possible

concrete implementations of “real” numbers:

� Constructive (infinite-precision) reals (e.g., [Vil88]);

� IEEE-754 floating point in several sizes, without infinities or NaN’s;

� IEEE-754 floating point in several sizes, with infinities and NaN’s;

� Vax, IBM 360, and other floating point representations.

Since the last of these seems to be going the way of the Dodo, we probably should concentrate on

IEEE representations.

We require that an SML system provide an implementation of the REAL signature, which can

use infinite-precision or floating-point representations.

The (optional) structure ConReal�REAL (possibly the same structure as Real) will be infinite-

precision “Constructive Reals.”

The implementation may, optionally, provide one or more implementations of the FLOAT signa-

ture providing various different precisions. These would be named:

ShortFloat Short precision (less than 32-bit) floating-point numbers represented as unboxed

values to save time and space at the expense of accuracy.

Float�� Single precision (32-bit) floating point.

Float�� Double precision (64-bit) floating point.

Float��� Float��	 Higher precision (96 or 128-bit) floating point.

Draft of June 26, 1995 7:03

13

One of these (usually Float��) would also be bound to Float.

The standard mathematical functions (e.g., sin, sqrt, etc.) are found in the Math structure.

For each different representation of reals (e.g., ConReal, Float��), there is an instance of the Math

structure (e.g., MathCon, Math��). Thus, each representation of reals has its own mathematical

functions.

3.4 Conversions

With various different representations available, there must be a way to convert between them.

There are five different kinds of conversions that must be provided:

� conversions between different sizes of integers (Cvt�IntNIntM).

� conversions between different sizes of words (Cvt�WordNWordM).

� conversions between different sizes of floating-point numbers (Cvt�FloatNFloatM).

� conversions floating point numbers and integers (Cvt�FloatNIntM).

� conversions between words and integers (Cvt�WordNIntM).

[[There will be a single structure Cvt that contains all of the conversion structures as

sub-structures.]]

For each pair of float structures F�G (e.g., Float��, Float��, Float��), in the system, such

that F�precision � G�precision, there must also be a structure ConvertFG matching the

signature CONVERTFLOAT.

[[What is the behavior of the conversions between the real type of a structure and the

default real type? Since the relative precision is not known, this would have to have some

default behavior (e.g., trunc) when the default real type has more information than the

target.]]

3.5 Floating-point arrays

For each floating-point structure FloatN, there may be a monomorphic array struture called

FloatNArray that matches the MONO
ARRAY signature.

Draft of June 26, 1995 7:03

Chapter 4

Text

This chapter deals with characters and strings. The old basis uses the int type to represent single

characters. This is unsatisfactory for several reasons:

� no symbolic names for pattern matching single characters

� character to string conversions require unecessary range checks

We propose that the single string type provided by the Definition be replaced with two types:

string and char, where the string type is a vector of characters.

[[we need to think about Unicode]]

[[There should be aCharVector structure withCharVector�vectormatchingString�string.

We may want to add tabulate to String]]

String conversions

There are conversions to and from strings for all of the base types. Each type has simple toString

and fromString functions for default conversions, as well as more sophisticated fmt and scan

functions. The scan functions are polymorphic over an abstract character stream; there general

form is:

val scan � �getc � �a �� �char 	 �a� option
 �� �a �� �ty 	 �a�

14

Chapter 5

Aggregates

This chapter describes various aggregate types that must be primitive in order to guarantee constant

time updating and indexing. Implementations are required to provide polymorphic array and vector

structures, and signatures for monomorphic arrays and vectors. The polymorphic and monomorphic

versions of these types have the same basic operations.

Both vectors and arrays are indexed from �; each vector or array structures defines the integer

variable maxlen, which defines the length of the longest allowed vector or array of that element

type. We require that the default integer representation have sufficient precision to index every

element of the largest possible array or vector.

5.1 Vectors

Vectors are immutable one-dimensional arrays of elements. Each vector structure provides two

different ways to create a vector: vector takes a list of elements and makes a vector out of it, and

tabulate takes a function from integers to vector elements, which it uses to initialize the vector

elements. Given a vector, one can get its length (using length), get an element (using sub), or

extract a sub-vector (using extract).

5.2 Arrays

Arrays are mutable one-dimensional arrays of elements. They have the same basic operations as

vectors, with a couple of minor differences and extra operations. The array operation creates an

array initialized to a given value, while the arrayoflist operation is used to make an array from

a list. An array value can be modified using the update operation, which replaces a given element

with another value. Lastly, the extract operation returns a vector of the corresponding vector type.

15

16

5.3 Monomorphic aggregates

An implementation may choose to provide various implementations of the MONO
ARRAY and

MONO
VECTOR signatures. If an implementation provides either a monomorphic array or vector

structure for a particular element type, then it should provide both structures.1 The main reason for

providing monomorphic vectors and arrays is that they allow more compact representations than

the polymorphic versions (e.g., a BoolVector implementation might use one bit per element).

Character vectors

The CharVector structure defines a view of the String structure that matches to the MONO
VECTOR

signature. The type CharVector�vector is the same as String�string.

Byte arrays and vectors

The Byte structure provides functions to extract strings from monomorphic arrays and vectors of

Word	�words. In addition, these types support additional operations for packing and unpacking

larger sizes of words. These can be found in the PackNBig and PackNLittle structures.

5.4 Lists

Polymorphic lists are traditionally an important class of aggregate in functional programming. As

such, lists are often supported with a large collection of library functions. We have attempted

to specify a somewhat smaller collection of operations that reflects common usage. The design

philosophy behind the List module is:

� The List module should be “moderately” complete, meaning that most programs will not

need to define any additional general list manipulation operations.

� A function should be included if both:

– Proven useful

– Complicated to implement, or significantly more concise or more efficient than an

equivalent combination of the other list functions.

� No gratuitous name changes.

1Since the MONO ARRAY structure refers to the corresponding vector type, one cannot have a monomorphic array
structure without the vector structure.

Draft of June 26, 1995 7:03

17

� No equality types.

� Different SML implementations may still desire to provide list utility library modules, though

if we have it right, they should be small.

Draft of June 26, 1995 7:03

Chapter 6

System interface

The system interface structures provide access to the underlying operating system features, and to

other run-time facilities.

6.1 Operating system interface

We assume a structure OS that contains all of the operating system related interfaces. At a minimum,

this structure must match the OS signature.

Input/Output

The I/O proposal is currently in a separate document.

6.2 Locale

Given that SML is an international language, we should support mechanisms for parameterizing the

system by locale. For example, ANSI C allows string collating, formating of monetary and numeric

values, and formatting of dates to be locale-specific.

At this time, we do not have a design proposal, but there seem to be two basic approaches: we

can define an abstract locale type that is passed as an explicit argument to those functions that

are locale-specific; or we can have a global notion of the current locale, with functions to get and

change it. C does the latter, but the former is in keeping with the functional nature of SML.

18

19

6.3 Directories and paths

The FileSys structure provides operations for navigating the directory hierarchy, for listing the

files in a directory, and some operations on files. The Path structure provides an abstract, system

independent, view of pathnames.

6.4 Time

We propose three structures to support access to timing and dates: Time, Date and Timer.

The abstract type Time�time is used both to represent intervals of time, and to represent points

in time, which are really just intervals starting at some common point (e.g., since 00:00, January

1, 1970 GMT). The Time structure provides mechanisms to convert between the time type and

various concrete representations. The Date structure provides a mechanism for converting between

time values (which are in Universal Coordinated Time) and the corresponding date in a particular

time zone. The Timer structure provides timers for measuring both CPU and “wall-clock” times.

6.5 Misc. stuff

val implementation � string

val versionName � string

Draft of June 26, 1995 7:03

Chapter 7

UNIX interface

Since a large fraction of SML users work on UNIX systems, it is important to standardize access to

UNIX system calls. This interface is based on the POSIX standard (IEEE standard 1003.1) [POS90],

with some extensions from the 1003.1a version, which is currently being voted upon.

The interface consists of the POSIX structure, which is divided into six sub-structures, along the

lines of the chapters of the POSIX standard. The sub-structures are:

Process operations for creating and managing processes.

ProcEnv operations on the process environment (e.g., process IDs, grocess groups).

FileSys operations on the file system.

PosixIO primitive I/O operations.

Device operations of terminal devices.

[[should this be called TermIO??]]

SysDB operations on the system data-base (e.g., passwords).

20

Chapter 8

The Old structure

To permit users to compile programs written under the old basis, we require that each implementation

provide the structure Old. This structure contains the top-level bindings specified in the Definition,

along with one or more substructures that define the top-level bindings of various implementations.

For example, a user might write:

local

open Old Old�NJ

in

user’s program
end

to compile a user’s program under the old SML/NJ basis.

We expect that at some future point, the Old module will be deemed obsolete, and will be

dropped from the standard basis.

21

Chapter 9

The top-level environment

This chapter describes the required top-level environment, which consists of: top-level identifiers,

both the pre-loaded required modules and identifiers made available without qualification; infix

identifiers; and overloading.

9.1 Pre-loaded modules

9.2 Top-level type, exception and value identifiers

[[add sharing constraints on types?]]

type unit

type int

type real

type char

type string

type substring

type exn

type �a array

type �a vector

type �a ref

datatype bool � false � true

datatype �a option � NONE � SOME of �a

datatype ordering � LESS � EQUAL � GREATER

datatype �a list � nil � �� of ��a 	 �a list�

22

23

exception Bind � General�Bind

exception Match � General�Match

exception Subscript � General�Subscript

exception Size � General�Size

exception Overflow � General�Overflow

exception Div � General�Div

exception Sqrt � General�Sqrt

exception Ln � General�Ln

exception Fail � General�Fail

exception Io �

val � � General��

val �op �� � General��

val �op ��� � General���

val �op ��� � General���

val �op o� � General�o

val �op before� � General�before

val ignore � General�ignore

val not � Bool�not

val chr � Char�chr

val ord � Char�ord

val size � String�size

val str � String�str

val concat � String�concat

val implode � String�implode

val explode � String�explode

val substring � String�substring

val � � String��

val hd � List�hd

val tl � List�tl

val null � List�null

val length � List�length

val � � List��

val app � List�app

val map � List�map

val foldl � List�foldl

val foldr � List�foldr

val rev � List�rev

9.3 Infix identifiers

The top-level environment has the following infix identifiers:

Draft of June 26, 1995 7:03

24

infix � 	 � div mod quot rem

infix � � � �

infixr � �� �

infix � � �� � �� � ��

infix � �� o

infix � before

9.4 Overloaded identifiers

The following symbols are overloaded:

�

�

�

	

�

div

mod

quot

rem

�

��

�

��

Draft of June 26, 1995 7:03

Chapter 10

Language issues

While this proposal is not an attempt to define a new language, it does raise some issues that must

be dealt with at the language definition level.

[[Imperative types?]]

10.1 Overloading

10.2 Literals

The new character type and the possibilityof multiple implementationsof the numeric types requires

addressing the issue of literals.

10.3 Character literals

With the new character type, there should be a notation for character literals. We propose the

notation

��c�

where “c” is any legal single character string. This notation has the advantage that existing legal

SML code will not be affected.

If Unicode characters are supported, then we will need additional syntax for them. We propose

that the escape sequence “�n)”, where n is a non-negative integer literal, be recognized. Also, we

will need syntax for Unicode strings.

25

26

10.4 Numeric literals

With the possibility of multiple representations of the numeric types in a given implementation

(e.g., SmallInt and LargeInt), there needs to be a way to distinguish the different literals. There

are a number of possible approaches to this problem:

� Many languages (e.g., C and Modula-3) use different notation for literals of different precision.

For example, the LargeInt literal � might be written �L.

� We could make literals have the default type unless constrained to some other type. Thus, the

top-level binding
val x � �

would give x the type Integer�int, while
val x � �� � LargeInt�int�

would give x the type LargeInt�int. If the default integer representation is SmallInt�int,

then the following would result in a type error:
val x � �� � LargeInt�int�

val y � x � �

since x has type LargeInt�int and � has type SmallInt�int (we are assuming that � is

overloaded here).

� Literals might be viewed as overloaded symbols that default to the default representation.

Thus, the top-level binding
val x � �

would give x the type Integer�int, while
val x � LargeInt����� ��

would give x the type LargeInt�int. Unlike under the previous proposal, the following

code would typecheck:
val x � �� � LargeInt�int�

val y � x � �

assuming that � is overloaded.

We have decided on the last of these, because we think it is the least surprising to the user.

In addition, we propose adding notation for hexadecimal integer constants (as is already done

in the SML/NJ compiler). Hexidecimal literals have the notation:

����x���������	�abcdefABCDEF��

They are overloaded in the same way as ordinary integer literals.

Word literals will have a “�w” prefix; for example: �w�, �w��, or �wxFF. Word literals do not

have a sign.

Draft of June 26, 1995 7:03

27

Real literals would be overloaded over the various R�real types (for structures R :REAL),

defaulting to Real�real.

10.5 Vector literals

A related issue is the question of syntax for vectors in expressions and patterns. The SML/NJ

compiler supports a modified version of the list notation for vector literals. The form is:

�� ���

and can be used in both expressions and patterns.

Draft of June 26, 1995 7:03

28

Draft of June 26, 1995 7:03

Part II

Manual pages

29

ARRAY(BASIS) Initial Basis ARRAY(BASIS)

NAME

Array — polymorphic mutable arrays

SYNOPSIS

signature ARRAY

structure Array : ARRAY

SIGNATURE

eqtype �a array

eqtype �a vector

val maxLen � int

val array � �int 	 �!a� �� �!a array

val tabulate � �int 	 �int �� �!a�� �� �!a array

val fromList � �!a list �� �!a array

val length � �a array �� int

val sub � ��a array 	 int� �� �a

val update � ��a array 	 int 	 �a� �� unit

val extract � ��a array 	 int 	 int option� �� �a vector

val copy � �

src � �a array� si � int� len � int option�

dst � �a array� di � int

 �� unit

val copyv � �

src � �a vector� si � int� len � int option�

dst � �a array� di � int

 �� unit

val app � ��a �� unit� �� �a array �� unit

val foldl � ���a 	 �b� �� �b� �� �b �� �a array �� �b

val foldr � ���a 	 �b� �� �b� �� �b �� �a array �� �b

val modify � ��a �� �a� �� �a array �� unit

val appi � ��int 	 �a� �� unit� �� ��a array 	 int 	 int option� �� unit

val foldli � ��int 	 �a 	 �b� �� �b� �� �b �� ��a array 	 int 	 int option� �� �b

val foldri � ��int 	 �a 	 �b� �� �b� �� �b �� ��a array 	 int 	 int option� �� �b

val modifyi � ��int 	 �a� �� �a� �� ��a array 	 int 	 int option� �� unit

DESCRIPTION

The Array structure provides polymorphic, one-dimensional, zero-based, updateable ar-

rays.

maxLen

is the maximum length of arrays supported by the implementation.

Last change: June 8, 1995 31

ARRAY(BASIS) Initial Basis ARRAY(BASIS)

array n� v�

creates an n-element, zero-based array with each element initialized to v. Raises

Size if n � 0 or if n � maxLen.

tabulate n� f�

create an n element array whose ith element is initialized to f�i�. The function f is

called in increasing order of i. Raises Size if n � 0 or if n � maxLen.

arrayOfList l

create an array whose elements are initialized to the elements of l. Raises Size if the

list has more than maxLen elements.

array�

is the unique zero-length array.

length arr

the number of elements in the array arr.

sub arr� i�

extracts (subscript) the ith element of array arr. Raises Subscript if i � 0 or

i � length�a�.

update arr� i� v�

replaces the ith element of arr by the value v. Raises Subscript if i � 0 or

i � length�a�.

extract a� i� n�

extracts the elements a�i � � � i � n � 1� as a vector of length n. The exception

Subscript is raised if i � 0 � n � 0 � jaj � i � n.

copy fsrc� si� len� dst� dig
copies len elements from the source array src starting at index si into the destination

array dst starting at index di. The exception Subscript is raised if len � 0, or if

either si � 0 � jsrcj � si � len, or di � 0 � jdst j � di � len.

More precisely, let src� and dst � be the contents of src and dst immediately prior to

the call to copy. Then upon successful completion of the call, for 0 � i � jdst j:

dst i �

�
src�si��i�di� if di � i � di � len

dst �i otherwise

Moreover, if src and dst are different arrays, then for 0 � i � jsrcj: srci � src�i.

32 Last change: June 8, 1995

ARRAY(BASIS) Initial Basis ARRAY(BASIS)

copyv fsrc� si� len� dst� dig
is like copy, except that src is a vector.

Note that type � array is an equality type even if � is not. Thus, the eqtype specification

in the signature ARRAY does not quite capture the equality semantics of arrays. All zero-

length arrays are equal to each other. Nonzero-length arrays a and b, created by different

calls to array, are always unequal, even if their elements are equal.

SEE ALSO

Vector(BASIS), MONO ARRAY(BASIS)

Last change: June 8, 1995 33

BOOL(BASIS) Initial Basis BOOL(BASIS)

NAME

Bool — Operations on booleans

SYNOPSIS

signature BOOL

structure Bool : BOOL

SIGNATURE

datatype bool � true � false

val not � bool �� bool

val fromString � string �� bool option

val toString � bool �� string

val scan � �getc � �a �� �char 	 �a� option
 �� �a �� �bool 	 �a� option

DESCRIPTION

34 Last change: March 31, 1995

BYTE(BASIS) Initial Basis BYTE(BASIS)

NAME

Byte — unsigned 8-bit integers

SYNOPSIS

signature BYTE

structure Byte : BYTE

SIGNATURE

exception Ord

val byteToChar � Word��word �� char

val charToByte � char �� Word��word

val bytesToString � Word�Vector�vector �� string

val stringToBytes � string �� Word�Vector�vector

val unpackStringV � �Word�Vector�vector 	 int 	 int option� �� string

val unpackString � �Word�Array�array 	 int 	 int option� �� string

val packStringV � �substring 	 Word�Vector�vector 	 int� �� unit

val packString � �substring 	 Word�Array�array 	 int� �� unit

DESCRIPTION

Bytes are unsigned 8-bit integers as provided by the Word	 structure, but two additional

operations are provided for conversion to and from ASCII characters.

The function byteToChar cannot fail: the range of character codes is guaranteed to be

at least 0–255, but in SML implementations that use Unicode, some characters are not

convertible to 8-bit integers; on these, charToByte will raise the Ord exception.

[[Under the wide character proposal, even this is not a problem]]

SEE ALSO

WORD(BASIS)

Last change: Apr 28, 1994 35

CHAR(BASIS) Initial Basis CHAR(BASIS)

NAME

Char — character type and operations

SYNOPSIS

signature CHAR

structure Char : CHAR

open Char

SIGNATURE

eqtype char

exception Chr

val chr � int �� char

val ord � char �� int

val minChar � char

val maxChar � char

val maxOrd � int

val succ � char �� char

val pred � char �� char

val � � �char 	 char� �� bool

val �� � �char 	 char� �� bool

val � � �char 	 char� �� bool

val �� � �char 	 char� �� bool

val compare � �char 	 char� �� ordering

val contains � string �� char �� bool

val notContains � string �� char �� bool

val isLower � char �� bool

val isUpper � char �� bool

val isDigit � char �� bool

val isAlpha � char �� bool

val isHexDigit � char �� bool

val isAlphaNum � char �� bool

val isPrint � char �� bool

val isSpace � char �� bool

val isPunct � char �� bool

val isGraph � char �� bool

val isCntrl � char �� bool

val isAscii � char �� bool

val toUpper � char �� char

val toLower � char �� char

36 Last change: June 7, 1995

CHAR(BASIS) Initial Basis CHAR(BASIS)

DESCRIPTION

The character type is a dense enumeration running from minChar to maxChar. We require

that ordminChar� be �, and that ordmaxChar� be maxOrd. The actual value of maxOrd

is implementationdependent. For example, an ASCII-based implementation might use ���

for maxOrd. The mapping between characters and integers is provided by the following

two operators:

chr i

returns the ith character. If i � 0 or maxOrd � i , then the exception Chr is raised.

ord c

returns the integer representation of the character. It should be the case that

chrord c� � c, for all characters c.

The relational operators on characters are defined by:

fun �op f� �c�� c"� � �op f��ord c�� ord c"�

where f is one of �, ��, � or ��.

SEE ALSO

String(BASIS)

Last change: June 7, 1995 37

CONVERT-INT(BASIS) Initial Basis CONVERT-INT(BASIS)

NAME

CONVERT INT — conversions between integer types

SYNOPSIS

signature CONVERT INT

SIGNATURE

type to

type from

val to � from �� to

val from � to �� from

DESCRIPTION

SEE ALSO

INTEGER (BASIS)

38 Last change: April 11, 1995

ConvertReal(BASIS) Initial Basis ConvertReal(BASIS)

NAME

CONVERT REAL — signature of floating-point conversions

SYNOPSIS

signature CONVERT REAL

structure Cvt.FloatNFloatM : CONVERT REAL

SIGNATURE

type small

sharing type FloatN�real � small

type large

sharing type FloatM�real � large

extend � small �� large

round � large �� small

trunc � large �� small

floor � large �� small

ceil � large �� small

DESCRIPTION

THis interface needs revision, but I’m not sure what the cuurrent proposal is.

SEE ALSO

FLOAT(BASIS)

Last change: February 6, 1995 39

ConvertWord(BASIS) Initial Basis ConvertWord(BASIS)

NAME

CONVERT WORD — signature of unsigned integer conversions

SYNOPSIS

signature CONVERT WORD

SIGNATURE

type word

type to

val to � word �� to

val extend � word �� to

val from � to �� word

DESCRIPTION

This is the interface of conversions from some word type to a larger integer or word type

(the type to).

to w

extend w

from n

SEE ALSO

WORD(BASIS)

40 Last change: April 11, 1995

DATE(BASIS) Initial Basis DATE(BASIS)

NAME

Date — interface to local time and date information

SYNOPSIS

signature DATE

structure Date : DATE

SIGNATURE

datatype weekday � Mon � Tue � Wed � Thu � Fri � Sat � Sun

datatype month

� Jan � Feb � Mar � Apr � May � Jun

� Jul � Aug � Sep � Oct � Nov � Dec

datatype date � DATE of �

year � int� �	 e�g�� �##� 	�

month � month�

day � int� �	 ���� 	�

hour � int� �	 ��"� 	�

minute � int� �	 ���# 	�

second � int� �	 ���� �leap seconds� 	�

wday � weekday option�

yday � int option� �	 ����� 	�

isDst � bool option �	 daylight savings time in force 	�

exception Date

val fromTime � Time�time �� date

val fromUTC � Time�time �� date

val toTime � date �� Time�time

val toString � date �� string

val fromString � string �� date option

val fmt � string �� date �� string

val scan � �getc � �a �� �char 	 �a� option
 �� �a �� �date 	 �a� option

val compare � �date 	 date� �� ordering

DESCRIPTION

This interfaces follows the ANSI C semantics. The compare operation defines a lexical

ordering using the year, month, day, hour, minute, and second fields. The other fields

are ignored.

SEE ALSO

FmtDate(BASIS), Time(BASIS)

Last change: Mar 05, 1994 41

FLOAT(BASIS) Initial Basis FLOAT(BASIS)

NAME

Float — floating-point arithmetic

SYNOPSIS

signature FLOAT

structure Float : FLOAT (optional)

structure Float64 : FLOAT (optional)

structure Float32 : FLOAT (optional)

structure FloatN : FLOAT etc.

SIGNATURE

include REAL

val radix � Integer�int �	 " for IEEE� Vax$ �� for IBM 	�

val precision � Integer�int

�	 the number of digits �each ���radix��� in mantissa 	�

val logb � real �� Integer�int

�	 takes log to the base �radix�� rounding towards negative infinity$

	 it is a fancy name for �extract exponent�

	�

val scalb � real 	 Integer�int �� real

�	 scalb�x�n� � x	radix�n 	�

val nextAfter � real 	 real �� real

�	 nextAfter�x� y� returns the next representable real after x in the

	 direction of y� If x � y� then it returns x�

	�

val maxFinite � real �	 maximum finite number 	�

val minPos � real �	 minimum non�zero positive number 	�

val minNormalPos � real �	 minimum non�zero normalized number 	�

DESCRIPTION

[[If we assume IEEE representations, then do we need radix?]]

[[We should have operations to decompose float values]]

SEE ALSO

Real(BASIS), Math(BASIS)

42 Last change: Apr 25, 1994

GENERAL(BASIS) Initial Basis GENERAL(BASIS)

NAME

General — basic definitions used in the pervasive environment

SYNOPSIS

signature GENERAL

structure General : GENERAL

open General

SIGNATURE

type exn

eqtype unit

exception Bind

exception Match

exception Interrupt �	 included for compatibility 	�

exception Subscript

exception Size

exception Overflow

exception Div

exception Sqrt

exception Ln

exception Fail of string

val exnMessage � exn �� string

val exnName � exn �� string

datatype �a option � NONE � SOME of �a

exception Option

val getOpt � ��a option 	 �a� �� �a

val isSome � �a option �� bool

val valOf � �a option �� �a

datatype ordering � LESS � EQUAL � GREATER

val � � ���a 	 ��a� �� bool

val �� � ���a 	 ��a� �� bool

val � � �a ref �� �a

val �� � �a ref 	 �a �� unit

val o � ���b �� �c� 	 ��a �� �b�� �� ��a �� �c�

val before � ��a 	 unit� �� �a

Last change: May 24, 1995 43

GENERAL(BASIS) Initial Basis GENERAL(BASIS)

val ignore � �a �� unit

DESCRIPTION

44 Last change: May 24, 1995

INTEGER(BASIS) Initial Basis INTEGER(BASIS)

NAME

INTEGER — Generic signature for integer arithmetic types and operations

SYNOPSIS

signature INTEGER

structure Integer : INTEGER

structure SmallInt : INTEGER (optional)

structure LargeInt : LARGE INT (optional)

structure IntN : INTEGER etc.

SIGNATURE

eqtype int

�	 infix � div mod 	 	�

�	 infix � � � 	�

�	 infix � � � �� �� 	�

structure ToLarge � CONVERT!INT

sharing type ToLarge�from � int

type ToLarge�to � LargestInt�int

structure ToInt � CONVERT!INT

sharing type ToInt�from � int

type ToInt�to � Integer�int

val precision � int option

val minInt � int option

val maxInt � int option

val � � int �� int

val 	 � int 	 int �� int

val div � int 	 int �� int

val mod � int 	 int �� int

val quot � int 	 int �� int

val rem � int 	 int �� int

val � � int 	 int �� int

val � � int 	 int �� int

val abs � int �� int

val � � int 	 int �� bool

val �� � int 	 int �� bool

val � � int 	 int �� bool

val �� � int 	 int �� bool

val compare � �int 	 int� �� ordering

Last change: February 6, 1995 45

INTEGER(BASIS) Initial Basis INTEGER(BASIS)

val min � �int 	 int� �� int

val max � �int 	 int� �� int

val sign � int �� int

val sameSign � �int 	 int� �� bool

val toString � int �� string

val fromString � string �� int option

val scan � StringCvt�radix �� �getc � �a �� �char 	 �a� option
 �� �a �� �int 	 �a� option

val fmt � StringCvt�radix �� int �� string

DESCRIPTION

The Integer structure is the same as either LargeInt (arbitrary precision integers) or

SmallInt (standard size, fixed-precision integers). SmallInt is the same as IntN for

some N .

The values precision, minInt, and maxInt are NONE in the LargeInt structure. In the

SmallInt structure, precision is the number of bits used to represent an integer; minInt

is the most negative integer, and maxInt is the most positive integer. In a two’s complement

implementation, it should be the case that:

2precision�1 � 1 � maxInt

�2precision�1 � minInt�

The operators �, �, �, �, and abs stand for integer negation, multiplication, addition, sub-

traction, and absolute value. The inequality comparison operators have the usual meaning.

The equality operators are not listed explicitly in the signature, but note that int is an

eqtype.

The operatorsdiv and mod are as in the Definition (i.e., div rounds toward negative infinity).

But we also include operators quot and rem, which have the standard hardware semantics

(i.e., round towards zero). More precisely, the following identities hold:

i div d � q

i mod d � r�

d� q � r � i

0 � r � d or d � r � 0

i quot d � q�

i rem d � r��

d� q� � r� � i

46 Last change: February 6, 1995

INTEGER(BASIS) Initial Basis INTEGER(BASIS)

0 � d� q� � i or i � d� q� � 0

0 � jrj � jdj

The operators div, mod, quot, and rem raise Div if their second argument is zero. If the

second argument is nonzero but the result is too large to be representable, Overflow is

raised.

sign i

returns �1, if i � 0; and 1, if i � 0.

sameSign i� j�

returns true, if i and j have the same sign.

SEE ALSO

LargeInt(BASIS)

Last change: February 6, 1995 47

LARGEINT(BASIS) Initial Basis LARGEINT(BASIS)

NAME

LargeInt — Arbitrary-precision integer structure

SYNOPSIS

signature LARGE INT

structure LargeInt : LARGE INT

SIGNATURE

include INTEGER

val divMod � �int 	 int� �� �int 	 int�

val quotRem � �int 	 int� �� �int 	 int�

val exp � �int 	 Integer�int� �� int

val log" � int �� Integer�int

DESCRIPTION

The LargeInt structure is one of the possible implementations of the INTEGER interface.

In addition to the INTEGER operations, it provides some operations useful for programming

with bignums.

The functions divMod and quotRem are defined by:

fun divMod �a� b� � �a div b� a mod b�

fun quotRem �a� b� � �a quot b� a rem b�

but are more efficient that doing both operations individually. These functions raise Div, if

their second argument is zero. The function exp raises its first argument to the power of its

second argument (which is a default integer). The function log� returns the log base-2 of

its argument as a default integer.

SEE ALSO

INTEGER(BASIS)

48 Last change: Mar 05, 1994

LIST(BASIS) Initial Basis LIST(BASIS)

NAME

List — List datatype and operations

SYNOPSIS

signature LIST

structure List : LIST

SIGNATURE

datatype �a list � nil � �� of �a 	 �a list

exception Empty

val null � �a list �� bool

val hd � �a list �� �a

val tl � �a list �� �a list

val last � �a list �� �a

val nth � �a list 	 int �� �a

val take � ��a list 	 int� �� �a list

val drop � ��a list 	 int� �� �a list

val length � �a list �� int

val rev � �a list �� �a list

val � � �a list 	 �a list �� �a list

val concat � �a list list �� �a list

val revAppend � �a list 	 �a list �� �a list

val app � ��a �� unit� �� �a list �� unit

val map � ��a �� �b� �� �a list �� �b list

val mapPartial � ��a �� �b option� �� �a list �� �b list

val find � ��a �� bool� �� �a list �� �a option

val filter � ��a �� bool� �� �a list �� �a list

val partition � ��a �� bool� �� �a list �� ��a list 	 �a list�

val foldl � ��a 	 �b �� �b� �� �b �� �a list �� �b

val foldr � ��a 	 �b �� �b� �� �b �� �a list �� �b

val exists � ��a �� bool� �� �a list �� bool

val all � ��a �� bool� �� �a list �� bool

val tabulate � �int 	 �int �� �a�� �� �a list

DESCRIPTION

The list type is defined in both General, and in the List module. The list operations are

Last change: November 12, 1994 49

LIST(BASIS) Initial Basis LIST(BASIS)

described below; some of these may raise the Empty exception when applied to nil.

null l

returns true, if the list l is nil.

hd l

returns the first item of the list l; it raises Empty when applied to nil.

tl l

returns the all but the first item of the list l; it raises Empty when applied to nil.

last l

returns the last item of the list l; it raises Empty when applied to nil.

nth l� i�

returns the ith element of the list l counting from zero. If i � 0 � jlj � i , then the

exception Subscript is raised.

take l� i�

Returns the first i elements of the list l. If i � 0 � jl j � i , then the exception

Subscript is raised.

drop l� i�

Returns the tail of the list l starting at the ith element (i.e., it drops the first i

elements). If i � 0 � jl j � i , then the exception Subscript is raised.

length l

returns the number of elements in the list l.

rev l

reverses the order of the elements of l.

l1 � l2

appends the elements of list l2 onto the end of l1.

concat l

concatenates a list of lists.

revAppend l1� l2�

returns rev l1� � l2.

app f l

applies the function f to the elements of l in left-to-right order. Since f is being

applied for its effect, it is constrained to return unit.

50 Last change: November 12, 1994

LIST(BASIS) Initial Basis LIST(BASIS)

map f l

maps the function f over the elements of the list l in left-to-right order, returning

the list of results.

mapPartial f l

maps the partial function f over the elements of the list l in left-to-right order,

returning the list of results where f is defined. We say that f is partial in the sense

that it returns NONE where it is not defined.

find pred l

returns the leftmost element of the list l that satisfies the predicate pred; it returns

NONE, if there is no such element. The function pred is applied from left to right, and

the search is terminated once an element has been found (i.e., pred is not applied

to any elements to the right of the leftmost element satisfying pred).

filter pred l

returns a list of the elements that satisfy the predicate pred. The predicate is applied

once to each element in left-to-right order, and the order of the result list respects

the order of l.

partition pred l

partitions the list l into a list of elements that satisfy the predicate pred, and a list of

elements that do not. The predicate is applied once to each element in left-to-right

order, and the order of the result lists respects the order of l.

foldl f init l

computes f�ln� f�ln�1� � � � � f�l1� init� � � ���, where the li are the elements of l.

Note that f is applied to the elements in left-to-right order.

foldr f init l

computes f�l1� f�l2� � � � � f�ln� init� � � ���, where the li are the elements of l. Note

that f is applied to the elements in right-to-left order.

exists pred l

returns true if there is an element of l that satisfies the predicate pred. As with

find, the predicate is tested from left-to-right, and the search is terminated once

an element has been found.

all pred l

returns true, if all elements of the list l satisfy the predicate pred. It is equivalent

to notexists not o pred� l�.

tabulate n� f�

generates the list �f �� f �� ���� f n � 1��. The function f is applied in

Last change: November 12, 1994 51

LIST(BASIS) Initial Basis LIST(BASIS)

left-to-right (increasing index) order. If n � 0, then the exception Size is raised.

SEE ALSO

General(Initial Basis), ListPair(Initial Basis)

52 Last change: November 12, 1994

ListPair(BASIS) Initial Basis ListPair(BASIS)

NAME

ListPair — operations on pairs of lists and lists of pairs

SYNOPSIS

signature LIST PAIR

structure ListPair : LIST PAIR

SIGNATURE

val zip � ��a list 	 �b list� �� ��a 	 �b� list

val unzip � ��a 	 �b� list �� ��a list 	 �b list�

val map � ��a 	 �b �� �c� �� ��a list 	 �b list� �� �c list

val app � ��a 	 �b �� unit� �� ��a list 	 �b list� �� unit

val all � ��a 	 �b �� bool� �� ��a list 	 �b list� �� bool

val exists � ��a 	 �b �� bool� �� ��a list 	 �b list� �� bool

DESCRIPTION

These are operations for computing with pairs of elements taken from a pair of lists.

zip l1� l2�

combines the two lists l1 and l2 into a list of pairs, with the first element of each

list comprising the first element of the result, the second elements comprising the

second element of the result, and so on. If the lists are of unequal lengths, the

excess elements from the tail of the longer one are ignored.

unzip l

returns a pair of lists formed by splitting the elements of l. This is the inverse of

zip.

map f l1� l2�

is equivalent to List�map f zip l1� l2��.

app f l1� l2�

is equivalent to List�app f zip l1� l2��.

all pred l1� l2�

is equivalent to List�all pred zip l1� l2��.

exists pred l1� l2�

is equivalent to List�exists pred zip l1� l2��.

SEE ALSO

List(Initial Basis)

Last change: November 15, 1994 53

Locale(BASIS) Initial Basis Locale(BASIS)

NAME

Locale — support for internationalization

SYNOPSIS

signature LOCALE

structure Locale : LOCALE

SIGNATURE

eqtype category

val collate � category

val ctype � category

val monetary � category

val numeric � category

val time � category

val messages � category

val all � category list

exception NoSuchLocale

val setLocale � �string 	 category list� �� unit

val getLocale � category �� string

datatype sign!posn

� PAREN

� PREC!ALL

� PREC!CURR

� FOLLOW!ALL

� FOLLOW!CURR

type lconv

val conventions � unit �� lconv

val decimalPoint � lconv �� char option �	 SOME������ 	�

val thousandsSep � lconv �� char option �	 NONE 	�

val grouping � lconv �� int list �	 � 	�

val currencySymbol � lconv �� string �	 NONE 	�

val intCurrSymbol � lconv �� string �	 NONE 	�

val monDecimalPoint � lconv �� char option �	 NONE 	�

val monThousandsSep � lconv �� char option �	 NONE 	�

val monGrouping � lconv �� int list �	 � 	�

val positiveSign � lconv �� string �	 NONE 	�

val negativeSign � lconv �� string �	 NONE 	�

val intFracDigits � lconv �� int option �	 NONE 	�

val fracDigits � lconv �� int option �	 NONE 	�

val posCSPrecedes � lconv �� bool option �	 NONE 	�

val posSepBySpace � lconv �� bool option �	 NONE 	�

val negCSPrecedes � lconv �� bool option �	 NONE 	�

54 Last change: April 12, 1995

Locale(BASIS) Initial Basis Locale(BASIS)

val negSepBySpace � lconv �� bool option �	 NONE 	�

val posSignPosn � lconv �� sign!posn option �	 NONE 	�

val negSignPosn � lconv �� sign!posn option �	 NONE 	�

val collateChr � �char 	 char� �� ordering

val collateStr � �substring 	 substring� �� ordering

exception NoSuchClass

val isClass � string �� char �� bool

DESCRIPTION

This is not the most recent version of this interface.

SEE ALSO

CAVEATS

Last change: April 12, 1995 55

MATH(BASIS) Initial Basis MATH(BASIS)

NAME

MATH — signature of mathematical library functions

SYNOPSIS

signature MATH

SIGNATURE

type real

exception Sqrt

exception Trig

exception Ln

val pi � real

val e � real

val sqrt � real �� real

val sin � real �� real

val cos � real �� real

val tan � real �� real

val atan � real �� real

val asin � real �� real

val acos � real �� real

val atan" � �real 	 real� �� real

val exp � real �� real

val pow � �real 	 real� �� real

val ln � real �� real

val log�� � real �� real

val sinh � real �� real

val cosh � real �� real

val tanh � real �� real

DESCRIPTION

The Math structure is a substructure of the structures matching the REAL signature. The

square root, exponential, and trigonometric functions are the same as those in the Definition,

but we have added additional standard functions:

pi

The constant � in the full precision of the given real type.

e

The constant e in the full precision of the given real type.

sqrt x

returns
p
x, for x � 0. If x � 0, then the exception Sqrt is raised.

sin x

returns the sine of x, where x is in radians.

56 Last change: October 2, 1994

MATH(BASIS) Initial Basis MATH(BASIS)

cos x

returns the cosine of x, where x is in radians.

tan x

returns the tangent of x, where x is in radians.

acos x

returns the arc cosine in the range 0 to �. If jxj � 1, then the exception Trig is

raised.

asin x

returns the arc sine in the range ��
2 to �

2 . If jxj � 1, then the exception Trig is

raised.

atan x

returns the arc tangent in the range ��
2 to �

2 .

atan� y� x�

returns the arc tangent of y
x

in the range �� to �, using the signs of both arguments

to determine the quadrant of the result. This has the following properties:

atan2�0� 0� � 0

tan�atan2�y� x�� � y�x, for x �� 0

jatan2�y� 0�j � ��2, for y �� 0

sign�cos�atan2�y� x�� � sign�x�

sign�sin�atan2�y� x�� � sign�y�

exp x

returns ex.

pow x� y�

returns xy .

ln x

returns the natural logarithm of x. If x � 0, then it raises the exception Ln.

log�� x

returns the base-10 logarithm of x. If x � 0, then it raises the exception Ln.

SEE ALSO

Real(BASIS), Float(BASIS)

Last change: October 2, 1994 57

MONO-ARRAY(BASIS) Initial Basis MONO-ARRAY(BASIS)

NAME

MONO ARRAY — generic signature of monomorphic array structures

SYNOPSIS

signature MONO ARRAY

SIGNATURE

eqtype array

eqtype elem

eqtype vector

val maxLen � int

val array � �int 	 elem� �� array

val tabulate � �int 	 �int �� elem�� �� array

val fromList � elem list �� array

val length � array �� int

val sub � �array 	 int� �� elem

val update � �array 	 int 	 elem� �� unit

val extract � �array 	 int 	 int option� �� vector

val copy � �

src � array� si � int� len � int option�

dst � array� di � int

 �� unit

val copyv � �

src � vector� si � int� len � int option�

dst � array� di � int

 �� unit

val app � �elem �� unit� �� array �� unit

val foldl � ��elem 	 �a� �� �a� �� �a �� array �� �a

val foldr � ��elem 	 �a� �� �a� �� �a �� array �� �a

val modify � �elem �� elem� �� array �� unit

val appi � ��int 	 elem� �� unit� �� �array 	 int 	 int option� �� unit

val foldli � ��int 	 elem 	 �a� �� �a� �� �a �� �array 	 int 	 int option� �� �a

val foldri � ��int 	 elem 	 �a� �� �a� �� �a �� �array 	 int 	 int option� �� �a

val modifyi � ��int 	 elem� �� elem� �� �array 	 int 	 int option� �� unit

DESCRIPTION

This is the generic signature of monomorphic arrays (e.g., CharArray). The equality type

array is the monomorphic array type, which is indexed from �. The type elem is the

element type, and the type vector is the type of the corresponding immutable vectors of

the elem type. As in the case of polymorphic arrays, two arrays are equal if, and only if,

they are the same array. For each monomorphic array type, there is a unique array of length

zero. The other members of the structure are:

58 Last change: June 8, 1995

MONO-ARRAY(BASIS) Initial Basis MONO-ARRAY(BASIS)

maxLen

is the maximum length supported for arrays of this type.

array n� v�

creates an array of n elements intialized to v. This raises the Size exception, if n

is either too large (� maxLen) or negative.

tabulate n� f�

creates an array of n elements, where the ith element is initialized to fi�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxLen) or negative.

arrayOfList l

creates an array from the list of elements l. This raises theSize exception, if the l has

more than maxLen elements. The zero-length array created by arrayOfList ��

is unique.

length arr

returns the length of the array arr.

sub arr� i�

returns the ith element of arr. The exception Subscript is raised if i is out of

bounds.

update arr� i� v�

replaces the ith element of arr with v. The exception Subscript is raised if i is

out of bounds.

extract arr� i� n�

extracts a vector of length n from the array arr, starting with the ith element. The

exception Subscript is raised if i � 0 � n � 0 � jaj � i � n.

copy fsrc� si� len� dst� dig
copies len elements from the source array src starting at index si into the destination

array dst starting at index di. The exception Subscript is raised if len � 0, or if

either si � 0 � jsrcj � si � len, or di � 0 � jdstj � di � len.

More precisely, let src� and dst � be the contents of src and dst immediately prior to

the call to copy. Then upon successful completion of the call, for 0 � i � jdstj:

dst i �

�
src�si��i�di� if di � i � di � len

dst �i otherwise

Moreover, if src and dst are different arrays, then for 0 � i � jsrcj: srci � src�i.

Last change: June 8, 1995 59

MONO-ARRAY(BASIS) Initial Basis MONO-ARRAY(BASIS)

copyv fsrc� si� len� dst� dig
is like copy, except that src is a vector.

SEE ALSO

Array(BASIS), MONO VECTOR(BASIS)

60 Last change: June 8, 1995

MONO-VECTOR(BASIS) Initial Basis MONO-VECTOR(BASIS)

NAME

MONO VECTOR — generic signature of monomorphic vector structures

SYNOPSIS

signature MONO VECTOR

SIGNATURE

eqtype vector

eqtype elem

val maxLen � int

val fromList � elem list �� vector

val tabulate � �int 	 �int �� elem�� �� vector

val length � vector �� int

val sub � �vector 	 int� �� elem

val extract � �vector 	 int 	 int option� �� vector

val concat � �a vector list �� �a vector

val app � �elem �� unit� �� vector �� unit

val foldl � ��elem 	 �a� �� �a� �� �a �� vector �� �a

val foldr � ��elem 	 �a� �� �a� �� �a �� vector �� �a

val appi � ��int 	 elem� �� unit� �� �vector 	 int 	 int option� �� unit

val foldli � ��int 	 elem 	 �a� �� �a� �� �a �� �vector 	 int 	 int option� �� �a

val foldri � ��int 	 elem 	 �a� �� �a� �� �a �� �vector 	 int 	 int option� �� �a

DESCRIPTION

This is the generic signature of monomorphic vectors (e.g., CharVector). The type vector

is the monomorphic vector type, which is indexed from �. The type elem is the element

type, and the type vector is the type of the corresponding immutable vectors of the elem

type. The other members of the structure are:

maxLen

is the maximum length supported for vectors of this type.

vector l

creates an vector from the list of elements l. This raises the Size exception, if the

l has more than maxLen elements.

tabulate n� f�

creates an vector of n elements, where the ith element is initialized to fi�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxLen) or negative.

Last change: June 8, 1995 61

MONO-VECTOR(BASIS) Initial Basis MONO-VECTOR(BASIS)

length vec

returns the length of the vector vec.

sub vec� i�

returns the ith element of vec. The exception Subscript is raised if i is out of

bounds.

extract vec� i� n�

extracts a vector of length n from the vector vec, starting with the ith element. The

exception Subscript is raised if i � 0 � n � 0 � jvecj � i � n.

concat vl

forms the concatenation of a list of vectors. If the sum of the lengths exceeds

maxLen, then the Size exception is raised.

SEE ALSO

MONO ARRAY(BASIS), Vector(BASIS)

62 Last change: June 8, 1995

OS(BASIS) Initial Basis OS(BASIS)

NAME

OS — Generic interface to operating system

SYNOPSIS

signature OS

structure OS : OS

SIGNATURE

type syserror

val errorMessage � syserror �� string

val errorName � syserror �� string

exception SysErr of �string 	 syserror option�

structure FileSys � OS!FILE!SYS

structure Path � OS!PATH

structure Process � OS!PROCESS

DESCRIPTION

The type syserror represents a system dependent error code; the function errorMsg

returns a useful error message from a syserror, while the function errorName returns

the name used by the system for the error code. For example on UNIX systems, applying

errorMessage to the EACCES error code might return �Permission denied�, while

errorName would return �EINTR�. The exception SysErr is the general exception used

by the system interfaces.

SEE ALSO

OS.FileSys(BASIS), OS.Path(BASIS), OS.Process(BASIS)

Last change: April 28, 1995 63

OS.FILESYS(BASIS) Initial Basis OS.FILESYS(BASIS)

NAME

OS.FileSys — system independent file-system operations

SYNOPSIS

signature FILE!SYS

structure OS � OS �

struct

���

structure FileSys � OS!FILE!SYS

���

end

SIGNATURE

type dirstream

val openDir � string �� dirstream

val readDir � dirstream �� string

val rewindDir � dirstream �� unit

val closeDir � dirstream �� unit

val chDir � string �� unit

val getDir � unit �� string

val mkDir � string �� unit

val rmDir � string �� unit

val isDir � string �� bool

val isLink � string �� bool

val readLink � string �� string

val realPath � string �� string

val fullPath � string �� string

val modTime � string �� Time�time

val setTime � �string 	 Time�time option� �� unit

val remove � string �� unit

val rename � �old � string� new � string
 �� unit

datatype access � A!READ � A!WRITE � A!EXEC

val access � �string 	 access list� �� bool

val tmpName � �dir � string option� prefix � string option
 �� string

DESCRIPTION

The FileSys structure provides a limited set of operations on directories and files, which

are portable across operating systems.

64 Last change: April 7, 1995

OS.FILESYS(BASIS) Initial Basis OS.FILESYS(BASIS)

Directories are viewed as a sequence of file names in some system dependent order. The

dirstream type represents this abstraction; the operations are:

openDir path

opens the specified directory stream.

readDir ds

returns the next file name in the stream ds. If all of the file names in ds have been

read, then the empty string is returned.

rewindDir ds

rewinds the stream ds to the beginning.

closeDir ds

closes the stream ds.

In addition to directory streams, the Directory structure provides operations for navigating

the directory hierarchy:

chDir path

changes the current working directory to the specified path.

getDir path

returns the current working directory.

mkDir path

creates the specified directory.

rmDir path

removes the specified directory.

isDir path

returns true if path names a directory. It raises the SysErr exception if path is

invalid, does not exist, or there is a permission error.

The interface provides operations for canonicalizing pathnames:

fullPath path

returns a canonical absolute physical path that names the object specified by path.

This includes making relative paths absolute, expanding symbolic links, and re-

moving empty, current and parent arcs. On file systems with case insensitive names,

the arc names are case converted to the “reference” case. Note that this does not

do tilde expansion on UNIX systems. If the path is ill-formed, the named object

does not exist, or the user does not have access to some object on the path, then the

SysErr exception is raised.

Last change: April 7, 1995 65

OS.FILESYS(BASIS) Initial Basis OS.FILESYS(BASIS)

realPath path

returns a canonical physical path that names the object specified by path. If path is

relative and names an object on the same volume as the current working directory,

then a relative path is returned, otherwise this returns the same result as fullPath.

If the path is ill-formed, the named object does not exist, or the user does not have

access to some object on the path, then the SysErr exception is raised.

Several operations are provided on other files:

modTime path

setTime path� t�

sets the file access and modification time (as returned by modTime) to t (if specified.

If t is not specified (i.e., NONE), then it uses the current time. If the file does not

exist, or is not readable, then the SysErr exception is raised with ml
op set to

the string �FileSys�setTime�. On UNIX systems, this sets both the access and

modification times.

remove path

Note that the effect of removing an open file is system dependent.

rename fnew� oldg

access path� acl�

tests the access permissions associated with the named file. If acl is nil, then this

tests for the existence of the named file.

tmpName fdir� prefixg
generates a pathname suitable for naming a temporary file. If prefix is specified,

then the first few characters of prefix will be used as the beginning of the file

name. The actual number of characters used from prefix depends on the underlying

operating system. If dir is specified, and names a writable directory, then it is used

as the location for the temporary file; otherwise a system dependent directory is

used (e.g., �usr�tmp on UNIX systems).

SEE ALSO

OS(BASIS),Path(BASIS)

66 Last change: April 7, 1995

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

NAME

OS.Path — System independent interface to pathnames

SYNOPSIS

signature PATH

structure OS � OS �

struct

���

structure Path � OS!PATH

���

end

SIGNATURE

exception Path

val parentArc � string

val currentArc � string

val validVolume � �isAbs � bool� vol � string
 �� bool

val fromString � string �� �isAbs � bool� vol � string� arcs � string list

val toString � �isAbs � bool� vol � string� arcs � string list
 �� string

val getVolume � string �� string

val getParent � string �� string

val splitDirFile � string �� �dir � string� file � string

val joinDirFile � �dir � string� file � string
 �� string

val dir � string �� string

val file � string �� string

val splitBaseExt � string �� �base � string� ext � string option

val joinBaseExt � �base � string� ext � string option
 �� string

val base � string �� string

val ext � string �� string option

val mkCanonical � string �� string

val isCanonical � string �� bool

val mkAbsolute � �string 	 string� �� string

val mkRelative � �string 	 string� �� string

val isAbsolute � string �� bool

val isRelative � string �� bool

val isRoot � string �� bool

val concat � �string 	 string� �� string

Last change: March 31, 1995 67

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

DESCRIPTION

This is a system independent module for manipulating strings that represent paths in the

directory structure. The description of these operations can be found elsewhere.

SEE ALSO

OS(BASIS)

68 Last change: March 31, 1995

OS.PROCESS(BASIS) Initial Basis OS.PROCESS(BASIS)

NAME

OS.Process — System independent interface to process primitives

SYNOPSIS

signature PROCESS

structure OS � OS �

struct

���

structure Process � OS!PROCESS

���

end

SIGNATURE

eqtype status

val success � status

val failure � status

val system � string �� status

val atExit � �unit �� unit� �� unit

val exit � status �� �a

val terminate � status �� �a

val getEnv � string �� string option

DESCRIPTION

success

the unique status value that signifies sucessful termination of a process.

failure

a status value that signifies an error during the execution of a process. Note that

unlike sucess, the value failure is not necessarily the only error value for the

type status. For example, on UNIX systems, any small non-zero integer signals

failure.

system cmd

executes the command cmd as a sub-process of the calling SML program. The call

to system returns when the sub-process has completed, and return status of the

sub-process is returned as a result. The format of the string is system dependent.

Last change: April 28, 1995 69

OS.PROCESS(BASIS) Initial Basis OS.PROCESS(BASIS)

atExit act

registers the action act to be executed when the SML program exits (e.g., calls

exit). Exit actions are executed in the order that they were registered.

exit sts

Causes the SML program to terminate after first invoking the exit actions. The

convention is that sts is success for successful termination, and is failure in the

case of errors.

terminate

This causes the SML program to terminate without invoking the exit actions.

COMMENT: the exit actions could have type status��unit to allow them to test the

return code.

SEE ALSO

OS(BASIS)

70 Last change: April 28, 1995

PACK-WORD(BASIS) Initial Basis PACK-WORD(BASIS)

NAME

PACK WORD — packing/unpacking of words in arrays of bytes

SYNOPSIS

signature PACK WORD

structure PacknBig : PACK WORD

structure PacknLittle : PACK WORD

SIGNATURE

val bytesPerElem � int

val isBigEndian � bool

val subVec � �Word�Vector�vector 	 int� �� LargestWord�word

val subVecX � �Word�Vector�vector 	 int� �� LargestWord�word

val subArr � �Word�Array�array 	 int� �� LargestWord�word

val subArrX � �Word�Array�array 	 int� �� LargestWord�word

val update � �Word�Array�array 	 int 	 LargestWord�word� �� unit

DESCRIPTION

The PacknBig structure provides a big-endian view of a sequence of bytes as a sequence of

n-bit word values, with extraction and update operations. Likewise, a PacknLittle struc-

ture provides little-endian view. Typically, implementations will provide these structures

for sizes equal to a power of 2 number of bytes (e.g., 16, 32 and 64 bits).

bytesPerElem

The number of bytes per element. Most implementations will provide structures

for powers of two numbers of bytes (e.g., 2, 4, and 8).

isBig

This is true, if this structure implements a big-endian view of the data.

subVec vec� i�

this extracts the bytesPerElem bytes starting at index i�bytesPerElem.

subVecX vec� i�

this extracts and sign extends thebytesPerElembytes startingat index i�bytesPerElem.

subArr arr� i�

this extracts the bytesPerElem bytes starting at index i�bytesPerElem.

subArrX arr� i�

this extracts and sign extends thebytesPerElembytes startingat index i�bytesPerElem.

Last change: April 3, 1995 71

PACK-WORD(BASIS) Initial Basis PACK-WORD(BASIS)

update arr� i� w�

SEE ALSO

Byte(BASIS), MONO ARRAY(BASIS) MONO VECTOR(BASIS), WORD(BASIS)

72 Last change: April 3, 1995

REAL(BASIS) Initial Basis REAL(BASIS)

NAME

Real — generic interface to real arithmetic

SYNOPSIS

signature REAL

structure Real : REAL

SIGNATURE

type real

structure ToLarge � CVT!REAL!INT

sharing type ToLarge�real � real

type ToLarge�int � LargestInt�int

structure ToInt � CVT!REAL!INT

sharing type ToInt�real � real

type ToInt�int � Integer�int

val � � real 	 real �� real

val � � real 	 real �� real

val 	 � real 	 real �� real

val � � real 	 real �� real

val � � real �� real

val abs � real �� real

val sign � real �� int

val sameSign � �real 	 real� �� bool

val toDefault � real �� Real�real

val fromDefault � Real�real �� real

val floor � real �� Integer�int �	 rounds toward negative infinity 	�

val ceil � real �� Integer�int �	 rounds toward positive infinity 	�

val trunc � real �� Integer�int �	 rounds toward zero 	�

val round � real �� Integer�int �	 rounds toward nearest� ties��nearest even 	�

val real � Integer�int �� real

val � � real 	 real �� bool

val �� � real 	 real �� bool

val � � real 	 real �� bool

val �� � real 	 real �� bool

val compare � �real 	 real� �� ordering

val toString � real �� string

val fromString � string �� real option

val scan � �getc � �a �� �char 	 �a� option
 �� �a �� �real 	 �a� option

val fmt � StringCvt�realfmt �� real �� string

Last change: February 10, 1994 73

REAL(BASIS) Initial Basis REAL(BASIS)

DESCRIPTION

[[Should real be an eqtype??]]

sign r

returns �1, if r � 0; and 1, if r � 0.

sameSign x� y�

returns true, if x and y have the same sign.

SEE ALSO

Math(BASIS), CONVERT REAL INT(BASIS)

74 Last change: February 10, 1994

STRING(BASIS) Initial Basis STRING(BASIS)

NAME

String — basic operations on strings

SYNOPSIS

signature STRING

structure String : STRING

SIGNATURE

eqtype string

val maxLen � int

val size � string �� int

val sub � �string 	 int� �� char

val substring � �string 	 int 	 int� �� string

val extract � �string 	 int 	 int option� �� string

val concat � string list �� string

val � � �string 	 string� �� string

val str � char �� string

val implode � char list �� string

val explode � string �� char list

val translate � �char �� string� �� string �� string

val tokens � �char �� bool� �� string �� string list

val fields � �char �� bool� �� string �� string list

val compare � �string 	 string� �� ordering

val collate � ��char 	 char� �� ordering� �� �string 	 string� �� ordering

val � � �string 	 string� �� bool

val �� � �string 	 string� �� bool

val � � �string 	 string� �� bool

val �� � �string 	 string� �� bool

DESCRIPTION

Strings are finite sequences of uptomaxLen characters. A substring is a triple (s, i, n), where

s is a string, i is the starting index of the substring in s, and n is the number of characters in

the substring. We say that a substring (s, i, n) is valid, if 0 � i � i� n � jsj.

size s

returns the number of characters in the string s.

sub (s, i)

returns the ith character in the string s. If i is out of range, then the exception

Subscript is raised.

Last change: April 7, 1995 75

STRING(BASIS) Initial Basis STRING(BASIS)

substring (s, i, n)

returns an n character substring starting at the ith character of s. If the substring (s,

i, n) is not valid, then the exception Subscript is raised.

concat sl

returns the concatenation of the list of strings sl.

s1ˆs2

returns the concatenation of s1 and s2. This is a left-associative infix operator with

precedence level 6.

str c

returns the string consisting of the character c.

implode cl

returns a string consisting of the characters in the list cl. This is equivalent to the

expression concat o map str�.

explode s

explodes the string s into a list of its constituent characters.

translate tr s

tokens p s

fields p s

cmp s1� s2�

SEE ALSO

Char(BASIS), MONO VECTOR(BASIS), Substring(BASIS)

76 Last change: April 7, 1995

STRING-CVT(BASIS) Initial Basis STRING-CVT(BASIS)

NAME

StringCvt — basic support for string conversions

SYNOPSIS

signature STRING CVT

structure StringCvt : STRING CVT

SIGNATURE

datatype radix � BIN � OCT � DEC � HEX

datatype realfmt

� SCI of int option

� FIX of int option

� GEN of int option

val toBool � string �� bool option

val toChar � string �� char option

val toInt � string �� int option

val toReal � string �� real option

val toString � string �� string option

val toWord � string �� word option

val fromBool � bool �� string

val fromChar � char �� string

val fromInt � int �� string

val fromReal � real �� string

val fromString � string �� string

val fromWord � word �� string

val padLeft � char �� int �� string �� string

val padRight � char �� int �� string �� string

type cs

val scanString �

��getc � cs �� �char 	 cs� option
 �� cs �� ��a 	 cs� option�

�� string �� �a option

DESCRIPTION

The type cs is an intermediate type for the stream of characters being supplied to the

scanning operation. For example in the following implementation, cs is int:
fun scanString scanFn s � let

val n � String�length s

fun getc i � if �i � n� then SOME�String�sub�s� i�� i��� else NONE

in

case �scanFn getc � getc ��

of NONE �� NONE

� SOME�x� !� �� SOME x

�	 end case 	�

end

Last change: June 4, 1995 77

STRING-CVT(BASIS) Initial Basis STRING-CVT(BASIS)

fromChar c

this converts the character c to a printable string representation. If c is non-printable,

or is the special character ����� or �����, then a standard ML escape sequence is

returned.

toChar s

this scans and converts a character from the string s. The standard ML escape

sequences are recognized. Note that unlike other scanning functions, this function

does not skip leading white-space. If s starts with a non-printing character or a

poorly formed escape character, then NONE is returned. If s starts with an escape

character code that is out of range, the the Chr exception is raised.

SEE ALSO

String(BASIS)

78 Last change: June 4, 1995

SUBSTRING(BASIS) Initial Basis SUBSTRING(BASIS)

NAME

Substring — substring manipulations

SYNOPSIS

signature SUBSTRING

structure Substring : STRING

SIGNATURE

type substring

val base � substring �� �string 	 int 	 int�

val string � substring �� string

val substring � �string 	 int 	 int� �� substring

val all � string �� substring

val isEmpty � substring �� bool

val getc � substring �� �char 	 substring� option

val first � substring �� char option

val triml � int �� substring �� substring

val trimr � int �� substring �� substring

val sub � �substring 	 int� �� char

val size � substring �� int

val slice � �substring 	 int 	 int option� �� substring

val concat � substring list �� string

val explode � substring �� char list

val compare � �substring 	 substring� �� ordering

val collate � ��char 	 char� �� ordering� �� �substring 	 substring� �� ordering

val splitl � �char �� bool� �� substring �� �substring 	 substring�

val splitr � �char �� bool� �� substring �� �substring 	 substring�

val splitAt � �substring 	 int� �� �substring 	 substring�

val dropl � �char �� bool� �� substring �� substring

val dropr � �char �� bool� �� substring �� substring

val takel � �char �� bool� �� substring �� substring

val taker � �char �� bool� �� substring �� substring

val position � string �� substring �� substring

val translate � �char �� string� �� substring �� string

val tokens � �char �� bool� �� substring �� substring list

Last change: April 7, 1995 79

SUBSTRING(BASIS) Initial Basis SUBSTRING(BASIS)

val fields � �char �� bool� �� substring �� substring list

val foldl � ��char 	 �a� �� �a� �� �a �� substring �� �a

val foldr � ��char 	 �a� �� �a� �� �a �� substring �� �a

val app � �char �� unit� �� substring �� unit

DESCRIPTION

A substring is an abstract representation of a contiguous subsequence of a string; we can

think of a substring as a triple hs� i� ni, where s is the underlying string, i is the starting

index of the substring in s, and n is the number of characters in the substring. In the

following discussion, we use the notation hs� i� ni to refer to an abstract substring. We

say that a substring hs� i� ni is valid, if 0 � i � i � n � jsj. The functions for creating

substrings check validity, and the substring operators all preserve validity. This allows

efficient implementations that can avoid bounds checking.

base hs� i� ni
returns the concrete representation of the substring; i.e., the triple s� i� n�.

string hs� i� ni
extracts the substring out as a string. This is the same asString�substrings� i� n�.

substring s� i� n�

Returns the substring hs� i� ni, if it is valid. Otherwise, it raises the Subscript

exception. This function may also raise Overflow, if i � n is not representable as

an Integer�int.

all s

returns a substring covering the entire string s.

isEmpty ss

returns true, if the substring is empty (i.e., has zero length).

getc ss

returns NONE, if ss is empty, otherwise it returns the first character in the substring

and the rest of the substring.

first ss

returns NONE, if ss is empty, otherwise it returns the first character in the substring.

triml k ss

trims k characters off the left of the substring ss. If k is greater than the length of

ss, the rightmost empty substring of ss is returned; if k � 0, then the Subscript

exception is raised.

80 Last change: April 7, 1995

SUBSTRING(BASIS) Initial Basis SUBSTRING(BASIS)

trimr k ss

trims k characters off the right of the substring ss. If k is greater than the length

of ss, the leftmost empty substring of ss is returned; if k � 0, then the Subscript

exception is raised.

sub hs� i� ni� j�

returns String�subs� i�j�, if 0 � j � n. Otherwise the Subscript exception

is raised.

size hs� i� ni
returns n.

SEE ALSO

Char(BASIS), String(BASIS)

Last change: April 7, 1995 81

TIME(BASIS) Initial Basis TIME(BASIS)

NAME

Time — Representation of time values

SYNOPSIS

signature TIME

structure Time : TIME

SIGNATURE

eqtype time

exception Time

val zeroTime � time

val realToTime � real �� time

val timeToReal � time �� real

val toSeconds � time �� int

val fromSeconds � int �� time

val toMilliseconds � time �� int

val fromMilliseconds � int �� time

val toMicroseconds � time �� int

val fromMicroseconds � int �� time

val � � �time 	 time� �� time

val � � �time 	 time� �� time

val � � �time 	 time� �� bool

val �� � �time 	 time� �� bool

val � � �time 	 time� �� bool

val �� � �time 	 time� �� bool

val compare � �time 	 time� �� ordering

val now � unit �� time

val fmt � int �� time �� string

val scan � �getc � �a �� �char 	 �a� option
 �� �a �� �time 	 �a� option

val toString � time �� string

val fromString � string �� time option

DESCRIPTION

The abstract type time is used to represent both intervals of time and absolute time values

(which can be thought of as intervals since some time zero).

zeroTime

is the time representation of zero (e.g., realToTime ���).

82 Last change: February 6, 1995

TIME(BASIS) Initial Basis TIME(BASIS)

realToTime r

converts a real number representing seconds to a time value. If r � 0, then the

exception Time is raised.

timeToReal t

If the this is not representable as an Real�real, then the Overflow exception is

raised.

fromSeconds sec

converts the integer number of seconds sec to a time value. If sec is negative, then

the Time exception is raised.

toSeconds t

returns the integer number of seconds represented by the time value t. The con-

version is done by truncation; fractional parts of a second are discarded. If the

number of two seconds is two large to be represented as an int, then the Overflow

exception is raised.

toMilliseconds sec

fromMilliseconds t

toMicroseconds sec

fromMicroseconds t

t1 � t2�

adds the time value t2 to t1.

t1 � t2�

subtracts the time value t2 from t1. If t� � t� , then the Time exception is raised.

t1 � t2�

returns true, if t� � t� .

t1 �� t2�

returns true, if t� �� t� .

t1 � t2�

returns true, if t� � t� .

t1 �� t2�

returns true, if t� �� t� .

Last change: February 6, 1995 83

TIME(BASIS) Initial Basis TIME(BASIS)

now �

returns the current time of day. The interpretation of this value is system dependent,

but the values returned by successive calls to now are monotonically increasing.

fmt prec t

converts the time value t to a string representation of the number of seconds. The

integer prec specifies the number of decimal digits to report. If prec � 0, then no

decimal digits are reported.

scan fgetcg charSrc

toString t

Converts the time value t to a string with millisecond precision. It is equivalent to:

fmt �.

fromStringing s

This converts the string s to a time value; it returns NONE, if s is not valid, and raises

Overflow if s is too large. It is equivalent to: StringCvt�scanString scan.

SEE ALSO

Date(BASIS), Timer(BASIS)

84 Last change: February 6, 1995

TIMER(BASIS) Initial Basis TIMER(BASIS)

NAME

Timer — Interface to system timers

SYNOPSIS

signature TIMER

structure Timer : TIMER

SIGNATURE

type cpu!timer

type real!timer

val totalCPUTimer � unit �� cpu!timer

val startCPUTimer � unit �� cpu!timer

val checkCPUTimer � cpu!timer �� �usr � Time�time� sys � Time�time� gc � Time�time

val totalRealTimer � unit �� real!timer

val startRealTimer � unit �� real!timer

val checkRealTimer � real!timer �� Time�time

DESCRIPTION

This module provides timers for measuring both CPU and real (wall-clock) time.

totalTimer ()

returns a timer that was started at system start-up.

startTimer ()

starts a new timer.

checkTimer timer

returns the current values of a timer. For CPU timing, this is broken out into user,

system and garbage collector time.

SEE ALSO

Time(BASIS)

CAVEATS

Some systems may not provide a mechanism for measuring CPU time, in which case, real

time should be substituted.

Last change: April 2, 1995 85

VECTOR(BASIS) Initial Basis VECTOR(BASIS)

NAME

Vector — immutable polymorphic vectors

SYNOPSIS

signature VECTOR

structure Vector : VECTOR

SIGNATURE

eqtype �a vector

val maxLen � int

val fromList � �a list �� �a vector

val tabulate � �int 	 �int �� �a�� �� �a vector

val length � �a vector �� int

val sub � ��a vector 	 int� �� �a

val extract � ��a vector 	 int 	 int option� �� �a vector

val concat � �a vector list �� �a vector

val app � ��a �� unit� �� �a vector �� unit

val foldl � ���a 	 �b� �� �b� �� �b �� �a vector �� �b

val foldr � ���a 	 �b� �� �b� �� �b �� �a vector �� �b

val appi � ��int 	 �a� �� unit� �� ��a vector 	 int 	 int option� �� unit

val foldli � ��int 	 �a 	 �b� �� �b� �� �b �� ��a vector 	 int 	 int option� �� �b

val foldri � ��int 	 �a 	 �b� �� �b� �� �b �� ��a vector 	 int 	 int option� �� �b

DESCRIPTION

The Vector structure provides one-dimensional, zero-based, immutable indexable arrays.

maxLen

is the maximum length supported for polymorphic vectors.

vector l

creates an vector from the list of elements l. This raises the Size exception, if the

l has more than maxLen elements.

tabulate n� f�

creates an vector of n elements, where the ith element is initialized to fi�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxLen) or negative.

length vec

returns the length of the vector vec.

86 Last change: June 8, 1995

VECTOR(BASIS) Initial Basis VECTOR(BASIS)

sub vec� i�

returns the ith element of vec. The exception Subscript is raised if i is out of

bounds.

extract vec� i� n�

extracts a vector of length n from the vector vec, starting with the ith element. The

exception Subscript is raised if i � 0 � n � 0 � jvecj � i � n.

concat vl

forms the concatenation of a list of vectors. If the sum of the lengths exceeds

maxLen, then the Size exception is raised.

SEE ALSO

Array(BASIS), MONO VECTOR(BASIS)

Last change: June 8, 1995 87

WORD(BASIS) Initial Basis WORD(BASIS)

NAME

Word — unsigned integers

SYNOPSIS

signature WORD

structure Word : WORD

structure Wordn : WORD

SIGNATURE

eqtype word

val wordSize � int

structure ToWord � CONVERT!WORD

sharing type ToWord�word � word

type ToWord�to � LargeWord�word

structure ToInt � CONVERT!WORD

sharing type ToInt�word � word

type ToInt�to � LargeInt�word

val orb � word 	 word �� word

val xorb � word 	 word �� word

val andb � word 	 word �� word

val notb � word �� word

val shift � word 	 int �� word

val ashift � word 	 int �� word

val � � word 	 word �� word

val � � word 	 word �� word

val 	 � word 	 word �� word

val div � word 	 word �� word

val mod � word 	 word �� word

val � � word 	 word �� bool

val � � word 	 word �� bool

val �� � word 	 word �� bool

val �� � word 	 word �� bool

val compare � �word 	 word� �� ordering

val toString � word �� string

val fromString � string �� word option

val scan � StringCvt�radix �� �getc � �a �� �char 	 �a� option
 �� �a �� �word 	 �a� option

val fmt � StringCvt�radix �� word �� string

DESCRIPTION

The word type represents integers modulo 2n, where wordSize � n.

88 Last change: April 11, 1995

WORD(BASIS) Initial Basis WORD(BASIS)

If the structure SmallInt is present, then

SmallInt�precision � SOMEWord�wordSize�

Also, if there are both Intn and Wordn structures present, then

Intn�precision � SOMEWordn�wordSize�

For the purposes of defining the semantics of the logical operations, the following definition

is useful:

bitwise��� � �
n�1X
i�0

2i�xi � yi�� mod 2n�

where xi � bx�2ic mod 2.

intToWord i

yields a word w representing i mod 2n. Cannot raise Overflow.

wordToInt w

Returns a the smallest nonnegative integer i such that intToWord�i� � w, if i

is representable as an int. Otherwise, returns the negative integer i of smallest

absolute value such that intToWord�i� � w, if i is representable as an int.

Otherwise, raises Overflow.

signExtend w

If w mod 2n � w mod 2n�1, returns the smallest nonnegative integer i such that

intToWord�i� � w.

If w mod 2n �� w mod 2n�1, returns the negative integer i of smallest absolute

value such that intToWord�i� � w.

If no such i is representable, raises Overflow.

orb x� y�

returns the bitwise or of x and y. That is, orb � bitwise���a� b���1� a��1 � b��.

xorb x� y�

bitwise exclusive-or, that is xorb � bitwise���a� b���a� b� mod 2�.

andb x� y�

bitwise and, that is andb � bitwise���a� b��a � b�.
notb w

returns the bitwise complement of w, that is notb � �w�bitwise���a� b��1 �
a��w�w�.

Last change: April 11, 1995 89

WORD(BASIS) Initial Basis WORD(BASIS)

shiftw� k�

shifts w left k bits; or shifts right if k is negative. shift�w� k� � b�w mod 2n� �
2kc mod 2n.

ashiftw� k�

Arithemetic shift: shifts w left k bits; or shifts right if k is negative; copies the

“sign bit” on right shifts.

ashift�w� k� � shift�w� k� if w mod 2n � w mod 2�n�1� or k � 0

ashift�w� k� � �shift��w� k� otherwise

op � w1� w2�

returns �w1 � w2� mod 2n.

op � w1� w2�

returns �w1 � w2� mod 2n.

op � w1� w2�

returns �w1 � w2� mod 2n.

op div x� y�

Unsigned division: returns
j
x�

y�

k
, where x� � x mod 2n 	 0 � x� � 2n 	 y� �

y mod 2n 	 0 � y� � 2n. Raises the Div exception if y� is �.

op mod x� y�

returns �x� y � �x div y�� mod 2n. Raises the Div exception if y is �.

SEE ALSO

Byte(BASIS), Int(BASIS), SmallInt(BASIS), CONVERT WORD(BASIS)

90 Last change: April 11, 1995

Part III

Amendment: POSIX 1003.1b-1993

91

POSIX(BASIS) Initial Basis POSIX(BASIS)

NAME

POSIX — POSIX 1003.1 binding

SYNOPSIS

signature POSIX

structure Posix � POSIX

SIGNATURE

structure Error � POSIX!ERROR

structure Signal � POSIX!SIGNAL

structure Process � POSIX!PROCESS

structure ProcEnv � POSIX!PROC!ENV

structure FileSys � POSIX!FILE!SYS

structure IO � POSIX!IO

structure SysDB � POSIX!SYS!DB

structure TTY � POSIX!TTY

sharing type Process�pid � ProcEnv�pid � TTY�pid

and type Process�signal � Signal�signal

and type ProcEnv�file!desc � FileSys�file!desc

� PrimIO�file!desc � TTY�file!desc

and type FileSys�offset � IO�offset � PrimIO�offset

and type FileSys�open!mode � IO�open!mode

and type ProcEnv�uid � FileSys�uid � SysDB�uid

and type ProcEnv�gid � FileSys�gid � SysDB�gid

DESCRIPTION

The POSIX structure defines an SML binding for the POSIX standard IEEE Std 1003.1b-

1993 (with some 1003.1a extensions). The organization of the POSIX structure largely

follows that of the standard; each substructure except for Signal and Error corresponds

to a different section in the standard.

SEE ALSO

Posix.Error(BASIS), Posix.Signal(BASIS), Posix.Process(BASIS), Posix.ProcEnv(BASIS),

Posix.FileSys(BASIS), Posix.IO(BASIS), Posix.SysDB(BASIS), Posix.TTY(BASIS), POSIX FLAGS(BAS

Last change: April 4, 1995 93

POSIX-ERROR(BASIS) Initial Basis POSIX-ERROR(BASIS)

NAME

Posix.Error — system errors

SYNOPSIS

signature POSIX!ERROR

structure Posix � POSIX �

struct

���

structure Error � POSIX!ERROR

���

end

SIGNATURE

eqtype syserror

val errorMsg � syserror �� string

val wordOf � syserror �� SystemWord�word

val syserror � SystemWord�word �� syserror

val toobig � syserror

val acces � syserror

val again � syserror

val badf � syserror

val badmsg � syserror

val busy � syserror

val canceled � syserror

val child � syserror

val deadlk � syserror

val dom � syserror

val exist � syserror

val fault � syserror

val fbig � syserror

val inprogress � syserror

val intr � syserror

val inval � syserror

val io � syserror

val isdir � syserror

val loop � syserror

val mfile � syserror

val mlink � syserror

val msgsize � syserror

val nametoolong � syserror

val nfile � syserror

val nodev � syserror

val noent � syserror

val noexec � syserror

94 Last change: March 17, 1995

POSIX-ERROR(BASIS) Initial Basis POSIX-ERROR(BASIS)

val nolck � syserror

val nomem � syserror

val nospc � syserror

val nosys � syserror

val notdir � syserror

val notempty � syserror

val notsup � syserror

val notty � syserror

val nxio � syserror

val perm � syserror

val pipe � syserror

val range � syserror

val rofs � syserror

val spipe � syserror

val srch � syserror

val xdev � syserror

DESCRIPTION

This structure encapsulates errors associated with POSIX system calls. In more typical

implementations, these errors would be represented as values of the errno variable declared

in �usr�include�errno�h. The declared syserror values correspond to the basic errors

defined in the POSIX standard (cf. Section 2.4 of IEEE Std 1003.1b-1993). The function

errorMsgmaps an error code to an error message (e.g., errorMsg enoentmight return the

string �No such file or directory�). The syserror and wordOf functions provide

access to the underlying representation of the error value. Values created by the former

have the possibility of not being defined in all POSIX compliant systems.

SEE ALSO

Posix(BASIS)

Last change: March 17, 1995 95

POSIX-FLAGS(BASIS) Initial Basis POSIX-FLAGS(BASIS)

NAME

POSIX FLAGS — POSIX bit flags interface

SYNOPSIS

signature POSIX!FLAGS

SIGNATURE

eqtype flags

val toWord � flags �� SystemWord�word

val wordTo � SystemWord�word �� flags

val flags � flags list �� flags

val allSet � flags 	 flags �� bool

val anySet � flags 	 flags �� bool

DESCRIPTION

This signature specifies the common operations used for setting and testing flags used in

POSIX functions. Typically, this signature is included in a substructure that also provides

a collection of pre-defined flags (cf. Posix.IO.O). The function flags forms the union of

all the flags set in its argument list. The call allSet f�f�� returns true if all the flags set

in f are also set in f�, i.e., f is a subset of f�. The call anySet f�f�� returns true if any

flag set in f is also set in f�, i.e., the intersection of f and f� is non-empty. The wordTo

and toWord functions provide access to the underlying representation of the flags as bits

set in a word. Values created by the former have the possibility of not being defined in all

POSIX compliant systems.

SEE ALSO

Posix(BASIS), Posix.Process(BASIS), Posix.FileSys(BASIS), Posix.IO(BASIS)

96 Last change: May 1, 1995

POSIX-FILE-SYS(BASIS) Initial Basis POSIX-FILE-SYS(BASIS)

NAME

Posix.FileSys — operations on the file system

SYNOPSIS

signature POSIX!FILE!SYS

structure Posix � POSIX �

struct

���

structure FileSys � POSIX!FILE!SYS

���

end

SIGNATURE

eqtype uid

eqtype gid

eqtype file!desc

val fdToWord � file!desc �� SystemWord�word

val wordToFD � SystemWord�word �� file!desc

type nlink

type offset

type dirstream

val openDir � string �� dirstream

val readDir � dirstream �� string

val rewindDir � dirstream �� unit

val closeDir � dirstream �� unit

val chdir � string �� unit

val getcwd � unit �� string

val stdin � file!desc

val stdout � file!desc

val stderr � file!desc

structure S �

sig

include POSIX!FLAGS

type mode

sharing type mode � flags

val irwxu � mode

val irusr � mode

Last change: May 1, 1995 97

POSIX-FILE-SYS(BASIS) Initial Basis POSIX-FILE-SYS(BASIS)

val iwusr � mode

val ixusr � mode

val irwxg � mode

val irgrp � mode

val iwgrp � mode

val ixgrp � mode

val irwxo � mode

val iroth � mode

val iwoth � mode

val ixoth � mode

val isuid � mode

val isgid � mode

end

datatype open!mode � O!RDONLY � O!WRONLY � O!RDWR

structure O �

sig

include POSIX!FLAGS

val append � flags

val dsync � flags

val excl � flags

val noctty � flags

val nonblock � flags

val rsync � flags

val sync � flags

val trunc � flags

end

val openf � �string 	 open!mode 	 O�flags� �� file!desc

val createf � �string 	 open!mode 	 O�flags 	 S�mode� �� file!desc

val creat � �string 	 S�mode� �� file!desc

val umask � S�mode �� S�mode

val link � �old � string� new � string
 �� unit

val mkdir � string 	 S�mode �� unit

val mkfifo � string 	 S�mode �� unit

val unlink � string �� unit

val rmdir � string �� unit

val rename � �old � string� new � string
 �� unit

val symlink � �old � string� new � string
 �� unit

val readlink � string �� string

eqtype dev

val wordToDev � SystemWord�word �� dev

val devToWord � dev �� SystemWord�word

eqtype ino

val wordToIno � SystemWord�word �� ino

val inoToWord � ino �� SystemWord�word

98 Last change: May 1, 1995

POSIX-FILE-SYS(BASIS) Initial Basis POSIX-FILE-SYS(BASIS)

eqtype file!type

val isDir � file!type �� bool

val isChr � file!type �� bool

val isBlk � file!type �� bool

val isReg � file!type �� bool

val isFIFO � file!type �� bool

val isLink � file!type �� bool

val isSock � file!type �� bool

structure ST �

sig

type stat

val fileType � stat �� file!type

val mode � stat �� S�mode

val ino � stat �� ino

val dev � stat �� dev

val nlink � stat �� nlink

val uid � stat �� uid

val gid � stat �� gid

val size � stat �� offset option

val atime � stat �� Time�time

val mtime � stat �� Time�time

val ctime � stat �� Time�time

end

val stat � string �� ST�stat

val lstat � string �� ST�stat

val fstat � file!desc �� ST�stat

datatype access!mode � A!READ � A!WRITE � A!EXEC

val access � string 	 access!mode list �� bool

val chmod � �string 	 S�mode� �� unit

val fchmod � �file!desc 	 S�mode� �� unit

val chown � �string 	 uid 	 gid� �� unit

val fchown � �file!desc 	 uid 	 gid� �� unit

val utime � string 	 �actime � Time�time� modtime � Time�time
 option �� unit

val ftruncate � file!desc 	 offset �� unit

val pathconf � �string 	 string� �� SystemWord�word option

val fpathconf � �file!desc 	 string� �� SystemWord�word option

DESCRIPTION

This structure provides the basic POSIX operations on file systems, as described in Section

5 of IEEE Std 1003.1b-1993. The wordToFD and fdToWord functions provide access to the

underlying arithmetic representation of a file
desc value. Similar statements hold for the

Last change: May 1, 1995 99

POSIX-FILE-SYS(BASIS) Initial Basis POSIX-FILE-SYS(BASIS)

functionswordToDev, devToWord, wordToIno and inoToWord and the types dev and ino.

The substructure S implements the standard POSIX permission bits. Here also, the functions

S�wordTo and S�toWord allow access to the underlying arithmetic representation. The

functions symlink, readlink, lstat and fchown are provided as part of the POSIX

standard 1003.1a, although this has not been officially accepted as yet. The functions

pathconf and fpathconf return NONE if the corresponding value is unbounded.

SEE ALSO

Posix(BASIS), POSIX FLAGS(BASIS)

100 Last change: May 1, 1995

POSIX-IO(BASIS) Initial Basis POSIX-IO(BASIS)

NAME

Posix.IO — basic I/O operations

SYNOPSIS

signature POSIX!IO

structure Posix � POSIX �

struct

���

structure IO � POSIX!IO

���

end

SIGNATURE

eqtype file!desc

eqtype offset

eqtype pid

val pipe � unit �� �infd � file!desc� outfd � file!desc

val dup � file!desc �� file!desc

val dup" � �old � file!desc� new � file!desc
 �� unit

val close � file!desc �� unit

val readVec � �file!desc 	 int� �� Word�Vector�vector

val readArr � �file!desc 	 �buf � Word�Array�array� i � int� sz � int
� �� int

val writeVec � �file!desc 	 Word�Vector�vector 	 int� �� int

val writeArr � �file!desc 	 �buf � Word�Array�array� i � int� sz � int
� �� int

datatype whence � SEEK!SET � SEEK!CUR � SEEK!END

structure FD �

sig

include POSIX!FLAGS

val cloexec � flags

end

structure O �

sig

include POSIX!FLAGS

val append � flags

val dsync � flags

val nonblock � flags

val rsync � flags

val sync � flags

Last change: May 1, 1995 101

POSIX-IO(BASIS) Initial Basis POSIX-IO(BASIS)

end

datatype open!mode � O!RDONLY � O!WRONLY � O!RDWR

val dupfd � �old � file!desc� new � file!desc
 �� unit

val getfd � file!desc �� FD�flags

val setfd � �file!desc 	 FD�flags� �� unit

val getfl � file!desc �� �O�flags 	 open!mode�

val setfl � �file!desc 	 O�flags� �� unit

datatype lock!type � F!RDLCK � F!WRLCK � F!UNLCK

structure Flock �

sig

type flock

val flock � � l!type � lock!type�

l!whence � whence�

l!start � offset�

l!len � offset�

l!pid � pid option
 �� flock

val ltype � flock �� lock!type

val whence � flock �� whence

val start � flock �� offset

val len � flock �� offset

val pid � flock �� pid option

end

val getlk � �file!desc 	 Flock�flock� �� Flock�flock

val setlk � �file!desc 	 Flock�flock� �� Flock�flock

val setlkw � �file!desc 	 Flock�flock� �� Flock�flock

val lseek � �file!desc 	 offset 	 whence� �� offset

val fsync � file!desc �� unit

DESCRIPTION

This structure provides the primitive POSIX I/O operations, as described in Section 6 of

IEEE Std 1003.1b-1993. The functions dupfd, getfd, setfd, getfl, setfl, getlk,

setlk and setlkw correspond to calls to the POSIX fcntl function with the commands

F
DUPFD, F
GETFD, F
SETFD, F
GETFL, F
SETFL, F
GETLK, F
SETLK and F
SETLKW,

respectively. The substructure FD implements sets of file descriptor flags, the only POSIX

required value being cloexec corresponding to the C constant FD
CLOEXEC. Similarly, the

substructure O implements sets of file status flags, with the supplied values append, dsync,

nonblock, rsync and sync corresponding to the POSIX defined C constants O
APPEND,

O
DSYNC, O
NONBLOCK, O
RSYNC and O
SYNC, respectively.

102 Last change: May 1, 1995

POSIX-IO(BASIS) Initial Basis POSIX-IO(BASIS)

SEE ALSO

Posix(BASIS), POSIX FLAGS(BASIS)

Last change: May 1, 1995 103

POSIX-PROC-ENV(BASIS) Initial Basis POSIX-PROC-ENV(BASIS)

NAME

Posix.ProcEnv — operations on the process environment

SYNOPSIS

signature POSIX!PROC!ENV

structure Posix � POSIX �

struct

���

structure ProcEnv � POSIX!PROC!ENV

���

end

SIGNATURE

eqtype pid

eqtype uid

eqtype gid

eqtype file!desc

val uidToWord � uid �� SystemWord�word

val wordToUid � SystemWord�word �� uid

val gidToWord � gid �� SystemWord�word

val wordToGid � SystemWord�word �� gid

val getpid � unit �� pid

val getppid � unit �� pid

val getuid � unit �� uid

val geteuid � unit �� uid

val getgid � unit �� gid

val getegid � unit �� gid

val setuid � uid �� unit

val setgid � gid �� unit

val getgroups � unit �� gid list

val getlogin � unit �� string

val getpgrp � unit �� pid

val setsid � unit �� pid

val setpgid � �pid � pid option� pgid � pid option
 �� unit

val uname � unit �� �string 	 string� list

val time � unit �� Time�time

104 Last change: June 9, 1995

POSIX-PROC-ENV(BASIS) Initial Basis POSIX-PROC-ENV(BASIS)

val times � unit �� �

elapsed � Time�time�

utime � Time�time�

stime � Time�time�

cutime � Time�time�

cstime � Time�time

val getenv � string �� string option

val environ � unit �� string list

val ctermid � unit �� string

val ttyname � file!desc �� string

val isatty � file!desc �� bool

val sysconf � string �� SystemWord�word

DESCRIPTION

This structure encapsulates the POSIX operations on the process environment, as described

in Section 4 of IEEE Std 1003.1b-1993. The wordToUid, wordToGid, uidToWord and

gidToWord functions provide access to the underlying arithmetic representation of uid and

gid values. The sysconf raises an exception if the corresponding feature is not supported

by the underlying operating system.

SEE ALSO

Posix(BASIS)

Last change: June 9, 1995 105

POSIX-PROCESS(BASIS) Initial Basis POSIX-PROCESS(BASIS)

NAME

Posix.Process — operations on processes

SYNOPSIS

signature POSIX!PROCESS

structure Posix � POSIX �

struct

���

structure Process � POSIX!PROCESS

���

end

SIGNATURE

eqtype signal

eqtype pid

val wordToPid � SystemWord�word �� pid

val pidToWord � pid �� SystemWord�word

val fork � unit �� pid option

val exec � string 	 string list �� �a

val exece � string 	 string list 	 string list �� �a

val execp � string 	 string list �� �a

datatype waitpid!arg

� W!ANY!CHILD

� W!CHILD of pid

� W!SAME!GROUP

� W!GROUP of pid

datatype exit!status

� W!EXITED

� W!EXITSTATUS of Word��word

� W!SIGNALED of signal

� W!STOPPED of signal

structure W �

sig

include POSIX!FLAGS

val untraced � flags

end

val wait � unit �� pid 	 exit!status

106 Last change: May 1, 1995

POSIX-PROCESS(BASIS) Initial Basis POSIX-PROCESS(BASIS)

val waitpid � waitpid!arg 	 W�flags list �� pid 	 exit!status

val waitpid!nh � waitpid!arg 	 W�flags list �� �pid 	 exit!status� option

val exit � Word��word �� �a

datatype killpid!arg

� K!PROC of pid

� K!SAME!GROUP

� K!GROUP of pid

val kill � killpid!arg 	 signal �� unit

val alarm � Time�time �� Time�time

val pause � unit �� unit

val sleep � Time�time �� Time�time

DESCRIPTION

This structure encapsulates the basic POSIX operations on processes, as described in Section

3 of IEEE Std 1003.1b-1993. The wordToPid and pidToWord functions provide access to

the underlying representation of a pid value.

SEE ALSO

Posix(BASIS), POSIX FLAGS(BASIS)

Last change: May 1, 1995 107

POSIX-SIGNAL(BASIS) Initial Basis POSIX-SIGNAL(BASIS)

NAME

Posix.Signal — system signals

SYNOPSIS

signature POSIX!SIGNAL

structure Posix � POSIX �

struct

���

structure Signal � POSIX!SIGNAL

���

end

SIGNATURE

eqtype signal

val toWord � signal �� SystemWord�word

val fromWord � SystemWord�word �� signal

val abrt � signal

val alrm � signal

val bus � signal

val fpe � signal

val hup � signal

val ill � signal

val int � signal

val kill � signal

val pipe � signal

val quit � signal

val segv � signal

val term � signal

val usr� � signal

val usr" � signal

val chld � signal

val cont � signal

val stop � signal

val tstp � signal

val ttin � signal

val ttou � signal

DESCRIPTION

This structure provides POSIX signals. The declared signal values correspond to the

basic signals defined in Section 3.3 of the POSIX standard IEEE Std 1003.1b-1993. The

signal and wordOf functions provide access to the underlying representation of the signal

value. Values created by the former have the possibility of not being defined in all POSIX

compliant systems.

108 Last change: May 1, 1995

POSIX-SIGNAL(BASIS) Initial Basis POSIX-SIGNAL(BASIS)

SEE ALSO

Posix(BASIS)

Last change: May 1, 1995 109

POSIX-SYS-DB(BASIS) Initial Basis POSIX-SYS-DB(BASIS)

NAME

Posix.SysDB — operations on the system data-base

SYNOPSIS

signature POSIX!SYS!DB

structure Posix � POSIX �

struct

���

structure SysDB � POSIX!SYS!DB

���

end

SIGNATURE

eqtype uid

eqtype gid

structure Passwd �

sig

type passwd

val name � passwd �� string

val uid � passwd �� uid

val gid � passwd �� gid

val home � passwd �� string

val shell � passwd �� string

end

structure Group �

sig

type group

val name � group �� string

val gid � group �� gid

val members � group �� string list

end

val getgrgid � gid �� Group�group

val getgrnam � string �� Group�group

val getpwuid � uid �� Passwd�passwd

val getpwnam � string �� Passwd�passwd

DESCRIPTION

These are the operations described in Section 9 of the IEEE Std 1003.1b-1993.

SEE ALSO

Posix(BASIS)

110 Last change: April 4, 1995

POSIX-TTY(BASIS) Initial Basis POSIX-TTY(BASIS)

NAME

Posix.Tty — operations on terminal devices

SYNOPSIS

signature POSIX!TTY

structure Posix � POSIX �

struct

���

structure TTY � POSIX!TTY

���

end

SIGNATURE

eqtype pid �	 process ID 	�

eqtype file!desc �	 file descriptor 	�

datatype c!iflag

� BRIINT � ICRNL � IGNBRK � IGNCR � IGNPAR � INLCR

� INPCK � ISTRIP � IXOFF � IXON � PARMRK

datatype c!oflag � OPOST

datatype cbits

� CS� � CS� � CS� � CS�

datatype c!cflag

� CLOCAL � CREAD � CSIZE of cbits � CSTOPB � HUPCL

� PARENB � PARODD

datatype c!lflag

� ECHO � ECHOE � ECHOK � ECHONL � ICANON � IEXTEN

� ISIG � NOFLSH � TOSTOP

datatype cc!item

� VEOF � VEOL � VERASE � VINTR � VKILL � VMIN � VQUIT

� VSUSP � VTIME � VSTART � VSTOP

type cc

val newcc � �cc!item 	 string� list �� cc

val updatecc � �cc 	 �cc!item 	 string� list� �� cc

val subcc � �cc 	 cc!item� �� string

type termios

datatype tcset!action � TCSANONE � TCSANOW � TCSADRAIN � TCSAFLUSH

datatype queue!sel � TCIFLUSH � TCOFLUSH � TCIOFLUSH

datatype flow!action � TCOOF � TCOON � TCIOFF � TCION

datatype speed

� B� � B�� � B�� � B��� � B��� � B��� � B"�� � B��� � B��� � B�"��

� B���� � B"��� � B���� � B#��� � B�#"�� � B�����

Last change: April 28, 1994 111

POSIX-TTY(BASIS) Initial Basis POSIX-TTY(BASIS)

val cfgetospeed � termios �� speed

val cfsetospeed � �termios 	 speed� �� unit

val cfgetispeed � termios �� speed

val cfsetispeed � �termios 	 speed� �� unit

val tcgetattr � file!desc �� termios

val tcsetattr � file!desc 	 tcset!action 	 termios �� unit

val tcsendbreak � file!desc 	 int �� unit

val tcdrain � file!desc �� unit

val tcflush � file!desc 	 queue!sel �� unit

val tcflow � file!desc 	 flow!action �� unit

val tcgetpgrp � file!desc �� pid

val tcsetpgrp � file!desc 	 pid �� unit

DESCRIPTION

These are the operations described in Section 7 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

112 Last change: April 28, 1994

Bibliography

[MTH90] Milner, R., M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,

Cambridge, Mass, 1990.

[POS90] IEEE. POSIX – Part 1: System Application Program Interface, 1990.

[Rep90] Reppy, J. H. Asynchronous signals in Standard ML. Technical Report TR 90-1144,

Department of Computer Science, Cornell University, August 1990.

[Vil88] Villemin, J. Exact real computer arithmetic with continued fractions. In Conference

record of the 1988 ACM Conference on Lisp and Functional Programming, July 1988,

pp. 14–27.

113

